Abstract The shallow portion of a megathrust represents the zone of first contact between two colliding plates, and its rheological properties control the seismic and tsunami hazards generated by the fault. The high cost of underwater geodetic data collection results in sparse observations, leading to limited constraints on the interseismic behavior of megathrusts. The Rakhine‐Bangladesh megathrust offers a unique opportunity to probe the behavior of the shallow megathrust as it is the only ocean‐continent subduction zone where the near‐trench region is fully accessible on land. Here, we use observations from ALOS‐2 wide‐swath imagery spanning 2015 to 2022 to conduct an InSAR timeseries analysis of the overriding plate within Bangladesh and the Indo‐Myanmar Ranges. We identify a narrow pattern of alternating uplift and subsidence associated with mapped anticlines but show that it cannot be explained by slip on the megathrust or other fault structures. Instead, we argue that the deformation is likely caused by active aseismic folding within the wedge above a shallow decollement. We show that estimates of the decollement depth derived from a viscous folding model and the observed anticline spacing are in agreement with previous seismic observations of the decollement depth across the fold belt. We suggest that the role of ductile deformation in the overriding plate in subduction zones may be more important than previously recognized.
more »
« less
This content will become publicly available on January 9, 2026
Interactions between megathrust behavior and forearc deformation in the Andreanof segment of the Aleutian Subduction Zone, offshore Alaska, USA
To explore controls on megathrust behavior and its connection with forearc deformation, we studied the Andreanof segment of the Aleutian Subduction Zone (offshore Alaska, USA), which has a simple geological history as a relatively young intra-oceanic subduction zone. Here, the forearc shows greater uplift and compression in the strongly coupled Adak region compared to the weakly coupled Atka region. Using multichannel seismic reflection data, we found that the incoming plate in both regions exhibits similar characteristics along the segment, suggesting that its properties do not account for the varying megathrust behavior and forearc deformation. Instead, differences between the Atka and Adak regions in the thickness of the methane hydrate stability zone, as marked by a bottom-simulating reflector, suggest more heat advection, and thus dewatering, in the Adak region, where the more developed fault network may enable fluid drainage, thereby lowering pore pressure at the megathrust and promoting coupling. Higher coupling allows for seismic and stress cycling that would sustain forearc permeability by faulting. Our results suggest a feedback between deformation and coupling that may be active or latent in other more complex subduction zones but in concert with or masked by other factors.
more »
« less
- Award ID(s):
- 2031725
- PAR ID:
- 10612414
- Publisher / Repository:
- Geological Society of America
- Date Published:
- Journal Name:
- Geology
- Volume:
- 53
- Issue:
- 4
- ISSN:
- 0091-7613
- Page Range / eLocation ID:
- 301 to 305
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In subduction zones, along‐strike and downdip variations in megathrust slip behavior are linked to changes in the properties of the subducting and overriding plates. Although marine geophysical methods provide insights into subduction zone structures, most surveys consist of sparse 2D profiles, limiting our understanding of first‐order controls. Here, we use active‐source seismic data to derive a 3D crustal‐scale P‐wave velocity model of the Alaska Peninsula subduction zone that encompasses both plates and spans the Semidi segment and SW Kodiak asperity. Our results reveal modest variations within the incoming plate, attributed to a series of fracture zones, seamounts and their associated basement swell, collectively contributing to plate hydration. Basement swell appears to modulate the distribution and type of sediment entering the trench, likely impacting observed variations in slip behavior. The overriding plate exhibits significant heterogeneity. The updip limit and width of the dynamic backstop are similar between the SW Kodiak asperity and eastern Semidi segment but differ significantly from the Western Semidi segment. These distinctions likely account for differences in earthquake rupture patterns and interseismic coupling among these segments. Additionally, high velocities in the mid‐lower forearc crust coincide with the location of the megathrust slip during the Mw 8.2 2021 Chignik event. We interpret these velocities as intracrustal intrusions that contributed to the deep rupture of the 2021 event. Our findings suggest that the contrasting structural and material properties of both the incoming and overriding plates influence the spatially complex and semi‐persistent segmentation of the megathrust offshore the Alaska Peninsula.more » « less
-
NA (Ed.)Abstract Subduction megathrusts exhibit a range of slip behaviors spanning from large earthquakes to aseismic creep, yet what controls spatial variations in the dominant slip mechanism remains unresolved. We present multichannel seismic images that reveal a correlation between the lithologic homogeneity of the megathrust and its slip behavior at a subduction zone that is world renowned for its lateral slip behavior transition, the Hikurangi margin. Where the megathrust exhibits shallow slow-slip in the central Hikurangi margin, the protolith of the megathrust changes ~10 km downdip of the deformation front, transitioning from pelagic carbonates to compositionally heterogeneous volcaniclastics. At the locked southern Hikurangi segment, the megathrust forms consistently within pelagic carbonates above thickened nonvolcanic siliciclastic sediments (unit MES), which subduct beyond 75 km horizontally. The presence of the MES layer plays a key role in smoothing over rough volcanic topography and establishing a uniform spatial distribution of lithologies and frictional properties that may enable large earthquake ruptures.more » « less
-
Abstract The heterogeneous seafloor topography of the Nazca Plate as it enters the Ecuador subduction zone provides an opportunity to document the influence of seafloor roughness on slip behavior and megathrust rupture. The 2016 Mw7.8 Pedernales Ecuador earthquake was followed by a rich and active postseismic sequence. An internationally coordinated rapid response effort installed a temporary seismic network to densify coastal stations of the permanent Ecuadorian national seismic network. A combination of 82 onshore short and intermediate period and broadband seismic stations and six ocean bottom seismometers recorded the postseismic Pedernales sequence for over a year after the mainshock. A robust earthquake catalog combined with calibrated relocations for a subset of magnitude ≥4 earthquakes shows pronounced spatial and temporal clustering. A range of slip behavior accommodates postseismic deformation including earthquakes, slow slip events, and earthquake swarms. Models of plate coupling and the consistency of earthquake clustering and slip behavior through multiple seismic cycles reveal a segmented subduction zone primarily controlled by subducted seafloor topography, accreted terranes, and inherited structure. The 2016 Pedernales mainshock triggered moderate to strong earthquakes (5 ≤ M ≤ 7) and earthquake swarms north of the mainshock rupture close to the epicenter of the 1906 Mw8.8 earthquake and in the segment of the subduction zone that ruptured in 1958 in a Mw7.7 earthquake.more » « less
-
Abstract From California to British Columbia, the Pacific Northwest coast bears an omnipresent earthquake and tsunami hazard from the Cascadia subduction zone. Multiple lines of evidence suggests that magnitude eight and greater megathrust earthquakes have occurred ‐ the most recent being 321 years ago (i.e., 1700 A.D.). Outstanding questions for the next great megathrust event include where it will initiate, what conditions are favorable for rupture to span the convergent margin, and how much slip may be expected. We develop the first 3‐D fully dynamic rupture simulations for the Cascadia subduction zone that are driven by fault stress, strength and friction to address these questions. The initial dynamic stress drop distribution in our simulations is constrained by geodetic coupling models, with segment locations taken from geologic analyses. We document the sensitivity of nucleation location and stress drop to the final seismic moment and coseismic subsidence amplitudes. We find that the final earthquake size strongly depends on the amount of slip deficit in the central Cascadia region, which is inferred to be creeping interseismically, for a given initiation location in southern or northern Cascadia. Several simulations are also presented here that can closely approximate recorded coastal subsidence from the 1700 A.D. event without invoking localized high‐stress asperities along the down‐dip locked region of the megathrust. These results can be used to inform earthquake and tsunami hazards for not only Cascadia, but other subduction zones that have limited seismic observations but a wealth of geodetic inference.more » « less
An official website of the United States government
