Moiré superlattices of twisted nonmagnetic two-dimensional (2D) materials are highly controllable platforms for the engineering of exotic correlated and topological states. Here, we report emerging magnetic textures in small-angle twisted 2D magnet chromium triiodide (CrI 3 ). Using single-spin quantum magnetometry, we directly visualized nanoscale magnetic domains and periodic patterns, a signature of moiré magnetism, and measured domain size and magnetization. In twisted bilayer CrI 3 , we observed the coexistence of antiferromagnetic (AFM) and ferromagnetic (FM) domains with disorder-like spatial patterns. In twisted double-trilayer CrI 3 , AFM and FM domains with periodic patterns appear, which is in good agreement with the calculated spatial magnetic structures that arise from the local stacking-dependent interlayer exchange interactions in CrI 3 moiré superlattices. Our results highlight magnetic moiré superlattices as a platform for exploring nanomagnetism.
more »
« less
Observation of stacking engineered magnetic phase transitions within moiré supercells of twisted van der Waals magnets
Abstract Recent demonstrations of moiré magnetism, featuring exotic phases with noncollinear spin order in the twisted van der Waals (vdW) magnet chromium triiodide CrI3, have highlighted the potential of twist engineering of magnetic (vdW) materials. However, the local magnetic interactions, spin dynamics, and magnetic phase transitions within and across individual moiré supercells remain elusive. Taking advantage of a scanning single-spin magnetometry platform, here we report observation of two distinct magnetic phase transitions with separate critical temperatures within a moiré supercell of small-angle twisted double trilayer CrI3. By measuring temperature-dependent spin fluctuations at the coexisting ferromagnetic and antiferromagnetic regions in twisted CrI3, we explicitly show that the Curie temperature of the ferromagnetic state is higher than the Néel temperature of the antiferromagnetic one by ~10 K. Our mean-field calculations attribute such a spatial and thermodynamic phase separation to the stacking order modulated interlayer exchange coupling at the twisted interface of moiré superlattices.
more »
« less
- Award ID(s):
- 1945023
- PAR ID:
- 10612442
- Publisher / Repository:
- Springer Nature
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 15
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Moiré magnetism featured by stacking engineered atomic registry and lattice interactions has recently emerged as an appealing quantum state of matter at the forefront of condensed matter physics research. Nanoscale imaging of moiré magnets is highly desirable and serves as a prerequisite to investigate a broad range of intriguing physics underlying the interplay between topology, electronic correlations, and unconventional nanomagnetism. Here we report spin defect-based wide-field imaging of magnetic domains and spin fluctuations in twisted double trilayer (tDT) chromium triiodide CrI3. We explicitly show that intrinsic moiré domains of opposite magnetizations appear over arrays of moiré supercells in low-twist-angle tDT CrI3. In contrast, spin fluctuations measured in tDT CrI3manifest little spatial variations on the same mesoscopic length scale due to the dominant driving force of intralayer exchange interaction. Our results enrich the current understanding of exotic magnetic phases sustained by moiré magnetism and highlight the opportunities provided by quantum spin sensors in probing microscopic spin related phenomena on two-dimensional flatland.more » « less
-
Abstract Exciton dynamics can be strongly affected by lattice vibrations through electron-phonon coupling. This is rarely explored in two-dimensional magnetic semiconductors. Focusing on bilayer CrI3, we first show the presence of strong electron-phonon coupling through temperature-dependent photoluminescence and absorption spectroscopy. We then report the observation of periodic broad modes up to the 8th order in Raman spectra, attributed to the polaronic character of excitons. We establish that this polaronic character is dominated by the coupling between the charge-transfer exciton at 1.96 eV and a longitudinal optical phonon at 120.6 cm−1. We further show that the emergence of long-range magnetic order enhances the electron-phonon coupling strength by ~50% and that the transition from layered antiferromagnetic to ferromagnetic order tunes the spectral intensity of the periodic broad modes, suggesting a strong coupling among the lattice, charge and spin in two-dimensional CrI3. Our study opens opportunities for tailoring light-matter interactions in two-dimensional magnetic semiconductors.more » « less
-
Moiré excitons and moiré magnetism are essential to semiconducting van der Waals magnets. In this work, we perform a comprehensive first-principles study to elucidate the interplay of electronic excitation and magnetism in twisted magnetic CrSBr bilayers. We predict a twist-induced quantum phase transition for interlayer magnetic coupling and estimate the critical twist angle below which moiré magnetism with mixed ferromagnetic and antiferromagnetic domains could emerge. Localized one-dimensional moiré excitons are stable if the interlayer coupling is ferromagnetic and become unstable if the coupling turns to antiferromagnetic. Exciton energy modulation by magnons is estimated and dependence of exciton oscillator strength on the twist angle and interlayer coupling is analyzed. An orthogonally twisted bilayer is revealed to exhibit layer-dependent, anisotropic optical transitions. Electric field is shown to induce net magnetic moments in moiré excitons, endowing them with exceedingly long lifetimes. Our work lays the foundation for using magnetic moiré bilayers in spintronic, optoelectronic, and quantum information applications.more » « less
-
Magnetic multilayer devices that exploit magnetoresistance are the backbone of magnetic sensing and data storage technologies. Here, we report multiple-spin-filter magnetic tunnel junctions (sf-MTJs) based on van der Waals (vdW) heterostructures in which atomically thin chromium triiodide (CrI 3 ) acts as a spin-filter tunnel barrier sandwiched between graphene contacts. We demonstrate tunneling magnetoresistance that is drastically enhanced with increasing CrI 3 layer thickness, reaching a record 19,000% for magnetic multilayer structures using four-layer sf-MTJs at low temperatures. Using magnetic circular dichroism measurements, we attribute these effects to the intrinsic layer-by-layer antiferromagnetic ordering of the atomically thin CrI 3 . Our work reveals the possibility to push magnetic information storage to the atomically thin limit and highlights CrI 3 as a superlative magnetic tunnel barrier for vdW heterostructure spintronic devices.more » « less
An official website of the United States government

