skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 1, 2026

Title: Achieving Data Reconstruction Hardness and Efficient Computation in Multiparty Minimax Training
Generative models have achieved remarkable success in a wide range of applications. Training such models using proprietary data from multiple parties has been studied in the realm of federated learning. Yet recent studies showed that reconstruction of authentic training data can be achieved in such settings. On the other hand, multiparty computation (MPC) guarantees standard data privacy, yet scales poorly for training generative models. In this paper, we focus on improving reconstruction hardness during Generative Adversarial Network (GAN) training while keeping the training cost tractable. To this end, we explore two training protocols that use a public generator and an MPC discriminator: Protocol 1 (P1) uses a fully private discriminator, while Protocol 2 (P2) privatizes the first three discriminator layers. We prove reconstruction hardness for P1 and P2 by showing that (1) a public generator does not allow recovery of authentic training data, as long as the first two layers of the discriminator are private; and through an existing approximation hardness result on ReLU networks, (2) a discriminator with at least three private layers does not allow authentic data reconstruction with algorithms polynomial in network depth and size. We show empirically that compared with fully MPC training, P1 reduces the training time by 2× and P2 further by 4 − 16×. Our implementation can be found at https://github.com/asu-crypto/ppgan  more » « less
Award ID(s):
2115075
PAR ID:
10612525
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
the 25th Privacy Enhancing Technologies Symposium (PETS) 2025.
Date Published:
Format(s):
Medium: X
Location:
United States
Sponsoring Org:
National Science Foundation
More Like this
  1. The core of self-supervised learning for pre-training language models includes pre-training task design as well as appropriate data augmentation. Most data augmentations in language model pre-training are context-independent. A seminal contextualized augmentation was recently proposed in ELECTRA and achieved state-of-the-art performance by introducing an auxiliary generation network (generator) to produce contextualized data augmentation for the training of a main discrimination network (discriminator). This design, however, introduces extra computation cost of the genera- tor and a need to adjust the relative capability between the generator and the discriminator. In this paper, we propose a self-augmentation strategy (SAS) where a single network is utilized for both regular pre-training and contextualized data augmentation for the training in later epochs. Essentially, this strategy eliminates a separate generator and uses the single network to jointly conduct two pre-training tasks with MLM (Masked Language Modeling) and RTD (Replaced Token Detection) heads. It avoids the challenge to search for an appropriate size of the generator, which is critical to the performance as evidenced in ELECTRA and its subsequent variant models. In addition, SAS is a general strategy that can be seamlessly combined with many new techniques emerging recently or in the future, such as the disentangled attention mechanism from DeBERTa. Our experiments show that SAS outperforms ELECTRA and other state-of-the-art models in the GLUE tasks with similar or less computation cost. 
    more » « less
  2. With the vast data-collecting capabilities of current and future high-energy collider experiments, there is an increasing demand for computationally efficient simulations. Generative machine learning models enable fast event generation, yet so far these approaches are largely constrained to fixed data structures and rigid detector geometries. In this paper, we introduce EPiC-GAN - equivariant point cloud generative adversarial network - which can produce point clouds of variable multiplicity. This flexible framework is based on deep sets and is well suited for simulating sprays of particles called jets. The generator and discriminator utilize multiple EPiC layers with an interpretable global latent vector. Crucially, the EPiC layers do not rely on pairwise information sharing between particles, which leads to a significant speed-up over graph- and transformer-based approaches with more complex relation diagrams. We demonstrate that EPiC-GAN scales well to large particle multiplicities and achieves high generation fidelity on benchmark jet generation tasks. 
    more » « less
  3. A Generative Adversarial Network (GAN) is an unsupervised generative framework to generate a sample distribution that is identical to the data distribution. Recently, mix strategy multi-generator/discriminator GANs have been shown to outperform single pair GANs. However, the mixed model suffers from the problem of linearly growing training time. Also, imbalanced training among generators makes it difficult to parallelize. In this paper, we propose a balanced mix-generator GAN that works in parallel by mixing multiple disjoint generators to approximate the real distribution. The weights of the discriminator and the classifier are controlled by a balance strategy. We also present an efficient loss function, to force each generator to embrace few modes with a high probability. Our model is naturally adaptive to large parallel computation frameworks. Each generator can be trained on multiple GPUs asynchronously. We have performed extensive experiments on synthetic datasets, MNIST1000, CIFAR-10, and ImageNet. The results establish that our model can achieve the state-of-the-art performance (in terms of the modes coverage and the inception score), with significantly reduced training time. We also show that the missing mode problem can be relieved with a growing number of generators. 
    more » « less
  4. Generative adversarial networks (GANs) are powerful tools for learning generative models. In practice, the training may suffer from lack of convergence. GANs are commonly viewed as a two-player zero-sum game between two neural networks. Here, we leverage this game theoretic view to study the convergence behavior of the training process. Inspired by the fictitious play learning process, a novel training method, referred to as Fictitious GAN, is introduced. Fictitious GAN trains the deep neural networks using a mixture of historical models. Specifically, the discriminator (resp. generator) is updated according to the best-response to the mixture outputs from a sequence of previously trained generators (resp. discriminators). It is shown that Fictitious GAN can effectively resolve some convergence issues that cannot be resolved by the standard training approach. It is proved that asymptotically the average of the generator outputs has the same distribution as the data samples. 
    more » « less
  5. We revisit the following version of the Gapped String Indexing problem, where the goal is to preprocess a text T[1..n] to enable efficient reporting of all occ occurrences of a gapped pattern P=P1[α..β]P2 in T. An occurrence of P in T is defined as a pair (i,j) where substrings T[i..i+|P1|) and T[j..j+|P2|) match P1 and P2, respectively, with a gap j−(i+|P1|) lying within the interval [α..β]. This problem has significant applications in computational biology and text mining. A hardness result on this problem suggests that any index with polylogarithmic query time must occupy near quadratic space. In a recent study [STACS 2024], Bille et al. presented a sub-quadratic space index using space O˜(n2−δ/3), where 0≤δ≤1 is a parameter fixed at the time of index construction. Its query time is O˜(|P1|+|P2|+nδ·(1+occ)), which is sub-linear per occurrence when δ<1. We show how to achieve a gap-sensitive query time of O˜(|P1|+|P2|+nδ·(1+occ1−δ)+∑g∈[α..β]occg·gδ) using the same space, where occg denotes the number of occurrences with gap g. This is faster when there are many occurrences with small gaps. 
    more » « less