skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Understanding Viral-Glycocalyx Interactions Using Brush-Linked to Cross-Linked Models
Award ID(s):
2200066
PAR ID:
10612534
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
Langmuir
Volume:
41
Issue:
27
ISSN:
0743-7463
Format(s):
Medium: X Size: p. 17716-17724
Size(s):
p. 17716-17724
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary Computerised Record Linkage methods help us combine multiple data sets from different sources when a single data set with all necessary information is unavailable or when data collection on additional variables is time consuming and extremely costly. Linkage errors are inevitable in the linked data set because of the unavailability of error‐free unique identifiers. A small amount of linkage errors can lead to substantial bias and increased variability in estimating parameters of a statistical model. In this paper, we propose a unified theory for statistical analysis with linked data. Our proposed method, unlike the ones available for secondary data analysis of linked data, exploits record linkage process data as an alternative to taking a costly sample to evaluate error rates from the record linkage procedure. A jackknife method is introduced to estimate bias, covariance matrix and mean squared error of our proposed estimators. Simulation results are presented to evaluate the performance of the proposed estimators that account for linkage errors. 
    more » « less
  2. Colloids that attractively bond to only a few neighbors (e.g., patchy particles) can form equilibrium gels with distinctive dynamic properties that are stable in time. Here, we use a coarse-grained model to explore the dynamics of linked networks of patchy colloids whose average valence is macroscopically, rather than microscopically, constrained. Simulation results for the model show dynamic hallmarks of equilibrium gel formation and establish that the colloid–colloid bond persistence time controls the characteristic slow relaxation of the self-intermediate scattering function. The model features re-entrant network formation without phase separation as a function of linker concentration, centered at the stoichiometric ratio of linker ends to nanoparticle surface bonding sites. Departures from stoichiometry result in linker-starved or linker-saturated networks with reduced connectivity and shorter characteristic relaxation times with lower activation energies. Underlying the re-entrant trends, dynamic properties vary monotonically with the number of effective network bonds per colloid, a quantity that can be predicted using Wertheim’s thermodynamic perturbation theory. These behaviors suggest macroscopic in situ strategies for tuning the dynamic response of colloidal networks. 
    more » « less
  3. Acid-catalyzed condensation of a nitronaphthalene-fused dipyrrylmethane with dipyrrylmethane dialdehydes afforded unique dipyrromethene-naphthoporphyrin conjugates together with expected nitronaphthoporphyrins. The unusual conjugated system retained aromatic porphyrin-type characteristics but afforded highly modified UV−vis spectra with multiple absorptions throughout the visible region. 
    more » « less