skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 3, 2026

Title: Dynamically Regularized Lagrange Multiplier Method for the Cahn‐Hilliard‐Navier‐Stokes System
ABSTRACT This paper is concerned with efficient and accurate numerical schemes for the Cahn‐Hilliard‐Navier‐Stokes phase field model of binary immiscible fluids. By introducing two Lagrange multipliers for each of the Cahn‐Hilliard and Navier‐Stokes parts, we reformulate the original model problem into an equivalent system that incorporates the energy evolution process. Such a nonlinear, coupled system is then discretized in time using first‐ and second‐order backward differentiation formulas, in which all nonlinear terms are treated explicitly and no extra stabilization term is imposed. The proposed dynamically regularized Lagrange multiplier (DRLM) schemes are mass‐conserving and unconditionally energy‐stable with respect to the original variables. In addition, the schemes are fully decoupled: Each time step involves solving two biharmonic‐type equations and two generalized linear Stokes systems, together with two nonlinear algebraic equations for the Lagrange multipliers. A key feature of the DRLM schemes is the introduction of the regularization parameters which ensure the unique determination of the Lagrange multipliers and mitigate the time step size constraint without affecting the accuracy of the numerical solution, especially when the interfacial width is small. Various numerical experiments are presented to illustrate the accuracy and robustness of the proposed DRLM schemes in terms of convergence, mass conservation, and energy stability.  more » « less
Award ID(s):
2409634 2041884
PAR ID:
10612789
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
International Journal for Numerical Methods in Engineering
Volume:
126
Issue:
13
ISSN:
0029-5981
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We propose two mass and heat energy conservative, unconditionally stable, decoupled numerical algorithms for solving the Cahn–Hilliard–Navier–Stokes–Darcy–Boussinesq system that models thermal convection of two‐phase flows in superposed free flow and porous media. The schemes totally decouple the computation of the Cahn–Hilliard equation, the Darcy equations, the heat equation, the Navier–Stokes equations at each time step, and thus significantly reducing the computational cost. We rigorously show that the schemes are conservative and energy‐law preserving. Numerical results are presented to demonstrate the accuracy and stability of the algorithms. 
    more » « less
  2. In this paper, we present efficient numerical schemes based on the Lagrange multiplier approach for the Navier-Stokes equations. By introducing a dynamic equation (involving the kinetic energy, the Lagrange multiplier, and a regularization parameter), we form a new system which incorporates the energy evolution process but is still equivalent to the original equations. Such nonlinear system is then discretized in time based on the backward differentiation formulas, resulting in a dynamically regularized Lagrange multiplier (DRLM) method. First- and second-order DRLM schemes are derived and shown to be unconditionally energy stable with respect to the original variables. The proposed schemes require only the solutions of two linear Stokes systems and a scalar quadratic equation at each time step. Moreover, with the introduction of the regularization parameter, the Lagrange multiplier can be uniquely determined from the quadratic equation, even with large time step sizes, without affecting accuracy and stability of the numerical solutions. Fully discrete energy stability is also proved with the Marker-and-Cell (MAC) discretization in space. Various numerical experiments in two and three dimensions verify the convergence and energy dissipation as well as demonstrate the accuracy and robustness of the proposed DRLM schemes. 
    more » « less
  3. In this paper, we consider numerical approximations for the viscous Cahn–Hilliard equa- tion with hyperbolic relaxation. This type of equations processes energy-dissipative struc- ture. The main challenge in solving such a diffusive system numerically is how to develop high order temporal discretization for the hyperbolic and nonlinear terms, allowing large time-marching step, while preserving the energy stability, i.e. the energy dissipative structure at the time-discrete level. We resolve this issue by developing two second-order time-marching schemes using the recently developed ‘‘Invariant Energy Quadratization’’ approach where all nonlinear terms are discretized semi-explicitly. In each time step, one only needs to solve a symmetric positive definite (SPD) linear system. All the proposed schemes are rigorously proven to be unconditionally energy stable, and the second-order convergence in time has been verified by time step refinement tests numerically. Various 2D and 3D numerical simulations are presented to demonstrate the stability, accuracy, and efficiency of the proposed schemes. 
    more » « less
  4. In this paper, we consider the numerical approximation for a phase field model of the coupled two-phase free flow and two-phase porous media flow. This model consists of Cahn– Hilliard–Navier–Stokes equations in the free flow region and Cahn–Hilliard–Darcy equations in the porous media region that are coupled by seven interface conditions. The coupled system is decoupled based on the interface conditions and the solution values on the interface from the previous time step. A fully discretized scheme with finite elements for the spatial discretization is developed to solve the decoupled system. In order to deal with the difficulties arising from the interface conditions, the decoupled scheme needs to be constructed appropriately for the interface terms, and a modified discrete energy is introduced with an interface component. Furthermore, the scheme is linearized and energy stable. Hence, at each time step one need only solve a linear elliptic system for each of the two decoupled equations. Stability of the model and the proposed method is rigorously proved. Numerical experiments are presented to illustrate the features of the proposed numerical method and verify the theoretical conclusions. 
    more » « less
  5. In this article, we consider a phase field model with different densities and viscosities for the coupled two-phase porous media flow and two-phase free flow, as well as the corresponding numerical simulation. This model consists of three parts: a Cahn–Hilliard–Darcy system with different densities/viscosities describing the porous media flow in matrix, a Cahn–Hilliard–Navier–Stokes system with different densities/viscosities describing the free fluid in conduit, and seven interface conditions coupling the flows in the matrix and the conduit. Based on the separate Cahn–Hilliard equations in the porous media region and the free flow region, a weak formulation is proposed to incorporate the two-phase systems of the two regions and the seven interface conditions between them, and the corresponding energy law is proved for the model. A fully decoupled numerical scheme, including the novel decoupling of the Cahn–Hilliard equations through the four phase interface conditions, is developed to solve this coupled nonlinear phase field model. An energy-law preservation is analyzed for the temporal semi-discretization scheme. Furthermore, a fully discretized Galerkin finite element method is proposed. Six numerical examples are provided to demonstrate the accuracy, discrete energy law, and applicability of the proposed fully decoupled scheme. 
    more » « less