skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Luminescence of nanocrystalline BaFCl codoped with Eu2+/3+ and Tb3+
BaFCl nanocrystals coactivated by Eu2+, Eu3+, and Tb3+were synthesizedviahot-injection and their luminescence response characterized between 80 and 430 K.  more » « less
Award ID(s):
2003118
PAR ID:
10612868
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
RSC
Date Published:
Journal Name:
Dalton Transactions
Volume:
53
Issue:
39
ISSN:
1477-9226
Page Range / eLocation ID:
16367 to 16376
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present a comprehensive study of the inhomogeneous mixed-valence compound, EuPd3S4, by electrical transport, X-ray diffraction, time-domain151Eu synchrotron Mössbauer spectroscopy, and X-ray absorption spectroscopy measurements under high pressure. Electrical transport measurements show that the antiferromagnetic ordering temperature,TN, increases rapidly from 2.8 K at ambient pressure to 23.5 K at ~19 GPa and plateaus between ~19 and ~29 GPa after which no anomaly associated withTNis detected. A pressure-induced first-order structural transition from cubic to tetragonal is observed, with a rather broad coexistence region (~20 GPa to ~30 GPa) that corresponds to theTNplateau. Mössbauer spectroscopy measurements show a clear valence transition from approximately 50:50 Eu2+:Eu3+to fully Eu3+at ~28 GPa, consistent with the vanishing of the magnetic order at the same pressure. X-ray absorption data show a transition to a fully trivalent state at a similar pressure. Our results show that pressure first greatly enhancesTN, most likely via enhanced hybridization between the Eu 4fstates and the conduction band, and then, second, causes a structural phase transition that coincides with the conversion of the europium to a fully trivalent state. 
    more » « less
  2. Abstract Nanothermometry is the study of temperature at the submicron scale with a broad range of potential applications, such as cellular studies or electronics. Molecular luminescent‐based nanothermometers offer a non‐contact means to record these temperatures with high spatial resolution and thermal sensitivity. A luminescent‐based molecular thermometer comprised of visible‐emitting Ga3+/Tb3+and Ga3+/Sm3+metallacrowns (MCs) achieved remarkable relative thermal sensitivity associated with very low temperature uncertainty ofSr=1.9 % K−1andδT<0.045 K, respectively, at 328 K, as an aqueous suspension of polystyrene nanobeads loaded with the corresponding MCs. To date, they are the ratiometric molecular nanothermometers offering the highest level of sensitivity in the physiologically relevant temperature range. 
    more » « less
  3. Three carboxamidequinoline ligands were synthesized and their complexes with Eu 3+ were used for recognition and detection of organic/inorganic phosphates in water. The signal transduction process is based on an “On–Off–On” switch in the fluorescence signal utilizing changes in the intramolecular charge transfer (ICT). The fluorescence emission of ligands is quenched upon exposure to the Eu 3+ (Off signal). Following the addition of the phosphate analytes the ligand–Eu 3+ complex disassembles, which results in the regeneration of the original emission of the ligand (On signal). In general, the Eu 3+ complexes show higher affinity towards adenosine 5′-triphosphate (ATP) and lower affinity to other phosphates, namely adenosine 5′-diphosphate (ADP), adenosine 5′-monophosphate (AMP), pyrophosphate (H 2 P 2 O 7 2− , PPi), and dihydrogenphosphate (H 2 PO 4 − , Pi). 
    more » « less
  4. Abstract In a high‐resolution photoelectron imaging and theoretical study of the IrB3cluster, two isomers were observed experimentally with electron affinities (EAs) of 1.3147(8) and 1.937(4) eV. Quantum calculations revealed two nearly degenerate isomers competing for the global minimum, both with a B3ring coordinated with the Ir atom. The isomer with the higher EA consists of a B3ring with a bridge‐bonded Ir atom (Cs,2A′), and the second isomer features a tetrahedral structure (C3v,2A1). The neutral tetrahedral structure was predicted to be considerably more stable than all other isomers. Chemical bonding analysis showed that the neutralC3visomer involves significant covalent Ir−B bonding and weak ionic bonding with charge transfer from B3to Ir, and can be viewed as an Ir–(η3‐B3+) complex. This study provides the first example of a boron‐to‐metal charge‐transfer complex and evidence of a π‐aromatic B3+ring coordinated to a transition metal. 
    more » « less
  5. Abstract Series of lanthanide‐containing metallic coordination complexes are frequently presented as structurally analogous, due to the similar chemical and coordinative properties of the lanthanides. In the case of chiral (LnIII[15‐MCN(L‐pheHA)‐5])3+metallacrowns (MCs), which are well established supramolecular hosts, the formation of dimers templated by a dicarboxylate guest (muconate) in solution of neutral pH is herein shown to have a unique dependence on the identity of the MC's central lanthanide. Calorimetric data and nuclear magnetic resonance diffusion studies demonstrate that MCs containing larger or smaller lanthanides as the central metal only form monomeric host‐guest complexes whereas analogues with intermediate lanthanides (for example, Eu, Gd, Dy) participate in formation of dimeric host‐guest‐host compartments. The driving force for the dimerization event across the series is thought to be a competition between formation of highly stable MCs (larger lanthanides) and optimally linked bridging guests (smaller lanthanides). 
    more » « less