skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 10, 2026

Title: Where to Intervene: Action Selection in Deep Reinforcement Learning
Deep reinforcement learning (RL) has gained widespread adoption in recent years but faces significant challenges, particularly in unknown and complex environments. Among these, high-dimensional action selection stands out as a critical problem. Existing works often require a sophisticated prior design to eliminate redundancy in the action space, relying heavily on domain expert experience or involving high computational complexity, which limits their generalizability across different RL tasks. In this paper, we address these challenges by proposing a general data-driven action selection approach with model-free and computational-friendly properties. Our method not only selects minimal sufficient actions but also controls the false discovery rate via knockoff sampling. More importantly, we seamlessly integrate the action selection into deep RL methods during online training. Empirical experiments validate the established theoretical guarantees, demonstrating that our method surpasses various alternative techniques in terms of both performances in variable selection and overall achieved rewards.  more » « less
Award ID(s):
2401271
PAR ID:
10612902
Author(s) / Creator(s):
;
Publisher / Repository:
Journal of Machine Learning Research (JMLR)
Date Published:
Journal Name:
Transactions on machine learning research
ISSN:
2835-8856
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Deep reinforcement learning (RL) has gained widespread adoption in recent years but faces significant challenges, particularly in unknown and complex environments. Among these, high-dimensional action selection stands out as a critical problem. Existing works often require a sophisticated prior design to eliminate redundancy in the action space, relying heavily on domain expert experience or involving high computational complexity, which limits their generalizability across different RL tasks. In this paper, we address these challenges by proposing a general data-driven action selection approach with model-free and computational-friendly properties. Our method not only selects minimal sufficient actions but also controls the false discovery rate via knockoff sampling. More importantly, we seamlessly integrate the action selection into deep RL methods during online training. Empirical experiments validate the established theoretical guarantees, demonstrating that our method surpasses various alternative techniques in terms of both performances in variable selection and overall achieved rewards. 
    more » « less
  2. Aleksandra Faust, David Hsu (Ed.)
    Modern Reinforcement Learning (RL) algorithms are not sample efficient to train on multi-step tasks in complex domains, impeding their wider deployment in the real world. We address this problem by leveraging the insight that RL models trained to complete one set of tasks can be repurposed to complete related tasks when given just a handful of demonstrations. Based upon this insight, we propose See-SPOT-Run (SSR), a new computational approach to robot learning that enables a robot to complete a variety of real robot tasks in novel problem domains without task-specific training. SSR uses pretrained RL models to create vectors that represent model, task, and action relevance in demonstration and test scenes. SSR then compares these vectors via our Cycle Consistency Distance (CCD) metric to determine the next action to take. SSR completes 58% more task steps and 20% more trials than a baseline few-shot learning method that requires task-specific training. SSR also achieves a four order of magnitude improvement in compute efficiency and a 20% to three order of magnitude improvement in sample efficiency compared to the baseline and to training RL models from scratch. To our knowledge, we are the first to address multi-step tasks from demonstration on a real robot without task-specific training, where both the visual input and action space output are high dimensional. Code is available in the supplement. 
    more » « less
  3. Reinforcement learning (RL) has been employed to devise the best course of actions in defending the critical infrastructures, such as power networks against cyberattacks. Nonetheless, even in the case of the smallest power grids, the action space of RL experiences exponential growth, rendering efficient exploration by the RL agent practically unattainable. The current RL algorithms tailored to power grids are generally not suited when the state-action space size becomes large, despite trade-offs. We address the large action-space problem for power grid security by exploiting temporal graph convolutional neural networks (TGCNs) to develop a parallel but heterogeneous RL framework. In particular, we divide the action space into smaller subspaces, each explored by an RL agent. How to efficiently organize the spatiotemporal action sequences then becomes a great challenge. We invoke TGCN to meet this challenge by accurately predicting the performance of each individual RL agent in the event of an attack. The top performing agent is selected, resulting in the optimal sequence of actions. First, we investigate the action-space size comparison for IEEE 5-bus and 14-bus systems. Furthermore, we use IEEE 14-bus and IEEE 118-bus systems coupled with the Grid2Op platform to illustrate the performance and action division influence on training times and grid survival rates using both deep Q-learning and Soft Actor Critic trained agents and Grid2Op default greedy agents. Our TGCN framework provides a computationally reasonable approach for generating the best course of actions to defend cyber physical systems against attacks. 
    more » « less
  4. null (Ed.)
    Robustness of Deep Reinforcement Learning (DRL) algorithms towards adversarial attacks in real world applications such as those deployed in cyber-physical systems (CPS) are of increasing concern. Numerous studies have investigated the mechanisms of attacks on the RL agent's state space. Nonetheless, attacks on the RL agent's action space (corresponding to actuators in engineering systems) are equally perverse, but such attacks are relatively less studied in the ML literature. In this work, we first frame the problem as an optimization problem of minimizing the cumulative reward of an RL agent with decoupled constraints as the budget of attack. We propose the white-box Myopic Action Space (MAS) attack algorithm that distributes the attacks across the action space dimensions. Next, we reformulate the optimization problem above with the same objective function, but with a temporally coupled constraint on the attack budget to take into account the approximated dynamics of the agent. This leads to the white-box Look-ahead Action Space (LAS) attack algorithm that distributes the attacks across the action and temporal dimensions. Our results showed that using the same amount of resources, the LAS attack deteriorates the agent's performance significantly more than the MAS attack. This reveals the possibility that with limited resource, an adversary can utilize the agent's dynamics to malevolently craft attacks that causes the agent to fail. Additionally, we leverage these attack strategies as a possible tool to gain insights on the potential vulnerabilities of DRL agents. 
    more » « less
  5. Reinforcement Learning (RL) has shown great promise in domains like healthcare and robotics but often struggles with adoption due to its lack of interpretability. Counterfactual explanations, which address ``what if” scenarios, provide a promising avenue for understanding RL decisions but remain underexplored for continuous action spaces. We propose a novel approach for generating counterfactual explanations in continuous action RL by computing alternative action sequences that improve outcomes while minimizing deviations from the original sequence. Our approach leverages a distance metric for continuous actions and accounts for constraints such as adhering to predefined policies in specific states. Evaluations in two RL domains, Diabetes Control and Lunar Lander, demonstrate the effectiveness, efficiency, and generalization of our approach, enabling more interpretable and trustworthy RL applications. 
    more » « less