skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 9, 2025

Title: Vaccine: Perturbation-aware alignment for large language model
The new paradigm of fine-tuning-as-a-service introduces a new attack surface for Large Language Models (LLMs): a few harmful data uploaded by users can easily trick the fine-tuning to produce an alignment-broken model. We conduct an empirical analysis and uncover a harmful embedding drift phenomenon, showing a probable cause of the alignment-broken effect. Inspired by our findings, we propose Vaccine, a perturbation-aware alignment technique to mitigate the security risk of users fine-tuning. The core idea of Vaccine is to produce invariant hidden embeddings by progressively adding crafted perturbation to them in the alignment phase. This enables the embeddings to withstand harmful perturbation from un-sanitized user data in the fine-tuning phase. Our results on open source mainstream LLMs (e.g., Llama2, Opt, Vicuna) demonstrate that Vaccine can boost the robustness of alignment against harmful prompts induced embedding drift while reserving reasoning ability towards benign prompts. Our code is available at https://github.com/git-disl/Vaccine.  more » « less
Award ID(s):
2302720
PAR ID:
10612915
Author(s) / Creator(s):
; ;
Publisher / Repository:
The Thirty-Eighth Annual Conference on Neural Information Processing Systems (NeurIPS 2024)
Date Published:
Subject(s) / Keyword(s):
GenAI, Safety
Format(s):
Medium: X
Location:
Vancouver, Canada.
Sponsoring Org:
National Science Foundation
More Like this
  1. Harmful fine-tuning attack poses serious safety concerns for large language models’ fine-tuning-as-a-service. While existing defenses have been proposed to mitigate the issue, their performances are still far away from satisfactory, and the root cause of the problem has not been fully recovered. To this end, we in this paper show that harmful perturbation over the model weights could be a probable cause of alignment-broken. In order to attenuate the negative impact of harmful perturbation, we propose an alignment-stage solution, dubbed Booster. Technically, along with the original alignment loss, we append a loss regularizer in the alignment stage’s optimization. The regularizer ensures that the model’s harmful loss reduction after the simulated harmful perturbation is attenuated, thereby mitigating the subsequent fine-tuning risk. Empirical results show that Booster can effectively reduce the harmful score of the fine-tuned models while maintaining the performance of downstream tasks. Our code is available at https://github.com/git-disl/Booster. 
    more » « less
  2. can be jail-broken by fine-tuning on a dataset mixed with harmful data. For the first time in the literature, we show that the jail-break effect can be mitigated by separating two states in the fine-tuning stage to respectively optimize over the alignment and user datasets. Unfortunately, our subsequent study shows that this simple Bi-State Optimization (BSO) solution experiences convergence instability when steps invested in its alignment state is too small, leading to downgraded alignment performance. By statistical analysis, we show that the excess drift towards the switching iterates of the two states could be a probable reason for the instability. To remedy this issue, we propose Lazy(i) safety alignment (Lisa), which introduces a proximal term to constraint the drift of each state. Theoretically, the benefit of the proximal term is supported by the convergence analysis, wherein we show that a sufficient large proximal factor is necessary to guarantee Lisa’s convergence. Empirically, our results on four downstream fine-tuning tasks show that Lisa with a proximal term can significantly increase alignment performance while maintaining the LLM’s accuracy on the user tasks. Code is available at https://github.com/git-disl/Lisa. 
    more » « less
  3. Large language models (LLMs) have demonstrated revolutionary capabilities in understanding complex contexts and performing a wide range of tasks. However, LLMs can also answer questions that are unethical or harmful, raising concerns about their applications. To regulate LLMs' responses to such questions, a training strategy called alignment can help. Yet, alignment can be unexpectedly compromised when fine-tuning an LLM for downstream tasks. This paper focuses on recovering the alignment lost during fine-tuning. We observe that there are two distinct directions inherent in an aligned LLM: the aligned direction and the harmful direction. An LLM is inclined to answer questions in the aligned direction while refusing queries in the harmful direction. Therefore, we propose to recover the harmful direction of the fine-tuned model that has been compromised. Specifically, we restore a small subset of the fine-tuned model's weight parameters from the original aligned model using gradient descent. We also introduce a rollback mechanism to avoid aggressive recovery and maintain downstream task performance. Our evaluation on 125 fine-tuned LLMs demonstrates that our method can reduce their harmful rate (percentage of answering harmful questions) from 33.25% to 1.74%, without sacrificing task performance much. In contrast, the existing methods either only reduce the harmful rate to a limited extent or significantly impact the normal functionality. Our code is available at https://github.com/kangyangWHU/LLMAlignment 
    more » « less
  4. Safety aligned Large Language Models (LLMs) are vulnerable to harmful fine-tuning attacks (Qi et al., 2023)– a few harmful data mixed in the fine-tuning dataset can break the LLMs’s safety alignment. While several defenses have been proposed, our evaluation shows that existing defenses fail when some specific training hyper-parameters are chosen – a large learning rate or a large number of training epochs in the fine-tuning stage can easily invalidate the defense. To this end, we propose Antidote, a post-fine-tuning stage solution, which remains agnostic to the training hyper-parameters in the fine-tuning stage. Antidote relies on the philosophy that by removing the harmful parameters, the harmful model can be recovered from the harmful behaviors, regardless of how those harmful parameters are formed in the fine-tuning stage. With this philosophy, we introduce a one-shot pruning stage after harmful fine-tuning to remove the harmful weights that are responsible for the generation of harmful content. Despite its embarrassing simplicity, empirical results show that Antidote can reduce harmful score while maintaining accuracy on downstream tasks. 
    more » « less
  5. Large language models (LLMs) are trained on a deluge of text data with limited quality control. As a result, LLMs can exhibit unintended or even harmful behaviours, such as leaking information, fake news or hate speech. Countermeasures, commonly referred to as preference alignment, include fine-tuning the pretrained LLMs with carefully crafted text examples of desired behaviour. Even then, empirical evidence shows preference aligned LLMs can be enticed to harmful behaviour. This so called jailbreaking of LLMs is typically achieved by adversarially modifying the input prompt to the LLM. Our paper provides theoretical insights into the phenomenon of preference alignment and jailbreaking from a statistical perspective. Under our framework, we first show that pretrained LLMs will mimic harmful behaviour if present in the training corpus. \textbf{Under that same framework, we then introduce a statistical notion of alignment, and lower-bound the jailbreaking probability, showing that it is unpreventable under reasonable assumptions.} 
    more » « less