skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 1, 2026

Title: On Off-Diagonal Hypergraph Ramsey Numbers
Abstract A fundamental problem in Ramsey theory is to determine the growth rate in terms of $$n$$ of the Ramsey number $$r(H, K_{n}^{(3)})$$ of a fixed $$3$$-uniform hypergraph $$H$$ versus the complete $$3$$-uniform hypergraph with $$n$$ vertices. We study this problem, proving two main results. First, we show that for a broad class of $$H$$, including links of odd cycles and tight cycles of length not divisible by three, $$r(H, K_{n}^{(3)}) \ge 2^{\Omega _{H}(n \log n)}$$. This significantly generalizes and simplifies an earlier construction of Fox and He which handled the case of links of odd cycles and is sharp both in this case and for all but finitely many tight cycles of length not divisible by three. Second, disproving a folklore conjecture in the area, we show that there exists a linear hypergraph $$H$$ for which $$r(H, K_{n}^{(3)})$$ is superpolynomial in $$n$$. This provides the first example of a separation between $$r(H,K_{n}^{(3)})$$ and $$r(H,K_{n,n,n}^{(3)})$$, since the latter is known to be polynomial in $$n$$ when $$H$$ is linear.  more » « less
Award ID(s):
2246847 2054452 2348859 2452737 2154129
PAR ID:
10612928
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Oxford Academic
Date Published:
Journal Name:
International Mathematics Research Notices
Volume:
2025
Issue:
11
ISSN:
1073-7928
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We determine the minimum degree sum of two adjacent vertices that ensures a perfect matching in a 3-uniform hypergraph without isolated vertex. Suppose that $$H$$ is a 3-uniform hypergraph whose order $$n$$ is sufficiently large and divisible by $$3$$. If $$H$$ contains no isolated vertex and $$\deg(u)+\deg(v) > \frac{2}{3}n^2-\frac{8}{3}n+2$$ for any two vertices $$u$$ and $$v$$ that are contained in some edge of $$H$$, then $$H$$ contains a perfect matching. This bound is tight and the (unique) extremal hyergraph is a different \emph{space barrier} from the one for the corresponding Dirac problem. 
    more » « less
  2. Abstract Sidorenko’s conjecture states that, for all bipartite graphs $$H$$, quasirandom graphs contain asymptotically the minimum number of copies of $$H$$ taken over all graphs with the same order and edge density. While still open for graphs, the analogous statement is known to be false for hypergraphs. We show that there is some advantage in this, in that if Sidorenko’s conjecture does not hold for a particular $$r$$-partite $$r$$-uniform hypergraph $$H$$, then it is possible to improve the standard lower bound, coming from the probabilistic deletion method, for its extremal number $$\textrm{ex}(n,H)$$, the maximum number of edges in an $$n$$-vertex $$H$$-free $$r$$-uniform hypergraph. With this application in mind, we find a range of new counterexamples to the conjecture for hypergraphs, including all linear hypergraphs containing a loose triangle and all $$3$$-partite $$3$$-uniform tight cycles. 
    more » « less
  3. One of the most intruguing conjectures in extremal graph theory is the conjecture of Erdős and Sós from 1962, which asserts that every $$n$$-vertex graph with more than $$\frac{k-1}{2}n$$ edges contains any $$k$$-edge tree as a subgraph. Kalai proposed a generalization of this conjecture to hypergraphs. To explain the generalization, we need to define the concept of a tight tree in an $$r$$-uniform hypergraph, i.e., a hypergraph where each edge contains $$r$$ vertices. A tight tree is an $$r$$-uniform hypergraph such that there is an ordering $$v_1,\ldots,v_n$$ of its its vertices with the following property: the vertices $$v_1,\ldots,v_r$$ form an edge and for every $i>r$, there is a single edge $$e$$ containing the vertex $$v_i$$ and $r-1$ of the vertices $$v_1,\ldots,v_{i-1}$$, and $$e\setminus\{v_i\}$$ is a subset of one of the edges consisting only of vertices from $$v_1,\ldots,v_{i-1}$$. The conjecture of Kalai asserts that every $$n$$-vertex $$r$$-uniform hypergraph with more than $$\frac{k-1}{r}\binom{n}{r-1}$$ edges contains every $$k$$-edge tight tree as a subhypergraph. The recent breakthrough results on the existence of combinatorial designs by Keevash and by Glock, Kühn, Lo and Osthus show that this conjecture, if true, would be tight for infinitely many values of $$n$$ for every $$r$$ and $$k$$.The article deals with the special case of the conjecture when the sought tight tree is a path, i.e., the edges are the $$r$$-tuples of consecutive vertices in the above ordering. The case $r=2$ is the famous Erdős-Gallai theorem on the existence of paths in graphs. The case $r=3$ and $k=4$ follows from an earlier work of the authors on the conjecture of Kalai. The main result of the article is the first non-trivial upper bound valid for all $$r$$ and $$k$$. The proof is based on techniques developed for a closely related problem where a hypergraph comes with a geometric structure: the vertices are points in the plane in a strictly convex position and the sought path has to zigzag beetwen the vertices. 
    more » « less
  4. Abstract Given a $$k$$-uniform hypergraph $$H$$ on $$n$$ vertices, an even cover in $$H$$ is a collection of hyperedges that touch each vertex an even number of times. Even covers are a generalization of cycles in graphs and are equivalent to linearly dependent subsets of a system of linear equations modulo $$2$$. As a result, they arise naturally in the context of well-studied questions in coding theory and refuting unsatisfiable $$k$$-SAT formulas. Analogous to the irregular Moore bound of Alon, Hoory, and Linial [3], Feige conjectured [8] an extremal trade-off between the number of hyperedges and the length of the smallest even cover in a $$k$$-uniform hypergraph. This conjecture was recently settled up to a multiplicative logarithmic factor in the number of hyperedges [12, 13]. These works introduce the new technique that relates hypergraph even covers to cycles in the associated Kikuchi graphs. Their analysis of these Kikuchi graphs, especially for odd $$k$$, is rather involved and relies on matrix concentration inequalities. In this work, we give a simple and purely combinatorial argument that recovers the best-known bound for Feige’s conjecture for even $$k$$. We also introduce a novel variant of a Kikuchi graph which together with this argument improves the logarithmic factor in the best-known bounds for odd $$k$$. As an application of our ideas, we also give a purely combinatorial proof of the improved lower bounds [4] on 3-query binary linear locally decodable codes. 
    more » « less
  5. Abstract Theq-colour Ramsey number of ak-uniform hypergraphHis the minimum integerNsuch that anyq-colouring of the completek-uniform hypergraph onNvertices contains a monochromatic copy ofH. The study of these numbers is one of the central topics in Combinatorics. In 1973, Erdős and Graham asked to maximise the Ramsey number of a graph as a function of the number of its edges. Motivated by this problem, we study the analogous question for hypergaphs. For fixed$$k \ge 3$$and$$q \ge 2$$we prove that the largest possibleq-colour Ramsey number of ak-uniform hypergraph withmedges is at most$$\mathrm{tw}_k(O(\sqrt{m})),$$where tw denotes the tower function. We also present a construction showing that this bound is tight for$$q \ge 4$$. This resolves a problem by Conlon, Fox and Sudakov. They previously proved the upper bound for$$k \geq 4$$and the lower bound for$$k=3$$. Although in the graph case the tightness follows simply by considering a clique of appropriate size, for higher uniformities the construction is rather involved and is obtained by using paths in expander graphs. 
    more » « less