Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract A fundamental problem in Ramsey theory is to determine the growth rate in terms of $$n$$ of the Ramsey number $$r(H, K_{n}^{(3)})$$ of a fixed $$3$$-uniform hypergraph $$H$$ versus the complete $$3$$-uniform hypergraph with $$n$$ vertices. We study this problem, proving two main results. First, we show that for a broad class of $$H$$, including links of odd cycles and tight cycles of length not divisible by three, $$r(H, K_{n}^{(3)}) \ge 2^{\Omega _{H}(n \log n)}$$. This significantly generalizes and simplifies an earlier construction of Fox and He which handled the case of links of odd cycles and is sharp both in this case and for all but finitely many tight cycles of length not divisible by three. Second, disproving a folklore conjecture in the area, we show that there exists a linear hypergraph $$H$$ for which $$r(H, K_{n}^{(3)})$$ is superpolynomial in $$n$$. This provides the first example of a separation between $$r(H,K_{n}^{(3)})$$ and $$r(H,K_{n,n,n}^{(3)})$$, since the latter is known to be polynomial in $$n$$ when $$H$$ is linear.more » « lessFree, publicly-accessible full text available June 1, 2026
-
Free, publicly-accessible full text available March 1, 2027
-
Free, publicly-accessible full text available November 1, 2026
-
We show that if and are linear transformations from to satisfying certain mild conditions, then, for any finite subset of , This result corrects and confirms the two-summand case of a conjecture of Bukh and is best possible up to the lower-order term for certain choices of and . As an application, we prove a lower bound for when is a finite set of real numbers and is an algebraic number. In particular, when is of the form for some , each taken as small as possible for such a representation, we show that This is again best possible up to the lower-order term and extends a recent result of Krachun and Petrov which treated the case .more » « lessFree, publicly-accessible full text available July 31, 2026
An official website of the United States government
