skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 13, 2025

Title: The equivariant Lazard ring of primary cyclic groups
This paper calculates the equivariant Lazard ring for primary cyclic groups, in terms of explicit generators and defining relations. This ring is known to coincide with the coefficient ring of the equivariant stable complex cobordism spectrum, which I compute by the method of isotropy separation, using a “staircase diagram.” This calculation provides new tools for constructing equivariant spectra.  more » « less
Award ID(s):
2301520
PAR ID:
10612936
Author(s) / Creator(s):
Publisher / Repository:
American Mathematical Society
Date Published:
Journal Name:
Transactions of the American Mathematical Society
ISSN:
0002-9947
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The topological Hochschild homology of a ring (or ring spectrum) R is an S1-spectrum, and the fixed points of THH(R) for subgroups C_n of S1 have been widely studied due to their use in algebraic K-theory computations. Hesselholt and Madsen proved that the fixed points of topological Hochschild homology are closely related to Witt vectors. Further, they defined the notion of a Witt complex, and showed that it captures the algebraic structure of the homotopy groups of the fixed points of THH. Recent work defines a theory of twisted topological Hochschild homology for equivariant rings (or ring spectra) that builds upon Hill, Hopkins and Ravenel's work on equivariant norms. In this paper, we study the algebraic structure of the equivariant homotopy groups of twisted THH. In particular, drawing on the definition of equivariant Witt vectors by Blumberg, Gerhardt, Hill and Lawson, we define an equivariant Witt complex and prove that the equivariant homotopy of twisted THH has this structure. Our definition of equivariant Witt complexes contributes to a growing body of research in the subject of equivariant algebra. 
    more » « less
  2. NA (Ed.)
    We define the equivariant degree and local degree of a proper G-equivariant map between smooth G-manifolds when G is a compact Lie group and prove a local to global result. We show the local degree can be used to compute the equivariant Euler characteristic of a smooth, compact G-manifold and the Euler number of a relatively oriented G-equivariant vector bundle when G is finite. As an application, we give an equivariantly enriched count of rational plane cubics through a G-invariant set of 8 general points in ℂℙ2, valued in the representation ring and Burnside ring of a finite group. When ℤ/2 acts by pointwise complex conjugation this recovers a signed count of real rational cubics. 
    more » « less
  3. Abstract Working in a polynomial ring , where is an arbitrary commutative ring with 1, we consider the th Veronese subalgebras , as well as natural ‐submodules inside . We develop and use characteristic‐free theory of Schur functors associated to ribbon skew diagrams as a tool to construct simple ‐equivariant minimal free ‐resolutions for the quotient ring and for these modules . These also lead to elegant descriptions of for all and for any pair of these modules . 
    more » « less
  4. This work gives an equivariantly enriched count of nodal orbits in a general pencil of plane conics that is invariant under a linear action of a finite group on CP2. This can be thought of as spearheading equivariant enumerative enrichments valued in the Burnside Ring, both inspired by and a departure from R(G)-valued enrichments such as Roberts’ equivariant Milnor number and Damon’s equivariant signature formula. Given a G-invariant general pencil of conics, the weighted sum of nodal orbits in the pencil is a formula in terms of the base locus considered as a G-set. We show this is true for all finite groups except Z/2 × Z/2 and D8 and give counterexamples for the two exceptional groups. 
    more » « less
  5. Tambara functors are an equivariant generalization of rings that appear as the homotopy groups of genuine equivariant commutative ring spectra. In recent work, Blumberg and Hill have studied the corresponding algebraic structures, called bi-incomplete Tambara functors, that arise from ring spectra indexed on incomplete G-universes. We answer a conjecture of Blumberg and Hill by proving a generalization of the Hoyer–Mazur theorem in the bi-incomplete setting. Bi-incomplete Tambara functors are characterized by indexing categories which parametrize incomplete systems of norms and transfers. In the course of our work, we develop several new tools for studying these indexing categories. In particular, we provide an easily checked, combinatorial characterization of when two indexing categories are compatible in the sense of Blumberg and Hill. 
    more » « less