skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 27, 2026

Title: Equivariant Witt complexes and twisted topological Hochschild homology
The topological Hochschild homology of a ring (or ring spectrum) R is an S1-spectrum, and the fixed points of THH(R) for subgroups C_n of S1 have been widely studied due to their use in algebraic K-theory computations. Hesselholt and Madsen proved that the fixed points of topological Hochschild homology are closely related to Witt vectors. Further, they defined the notion of a Witt complex, and showed that it captures the algebraic structure of the homotopy groups of the fixed points of THH. Recent work defines a theory of twisted topological Hochschild homology for equivariant rings (or ring spectra) that builds upon Hill, Hopkins and Ravenel's work on equivariant norms. In this paper, we study the algebraic structure of the equivariant homotopy groups of twisted THH. In particular, drawing on the definition of equivariant Witt vectors by Blumberg, Gerhardt, Hill and Lawson, we define an equivariant Witt complex and prove that the equivariant homotopy of twisted THH has this structure. Our definition of equivariant Witt complexes contributes to a growing body of research in the subject of equivariant algebra.  more » « less
Award ID(s):
2104300
PAR ID:
10614341
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Topology and its Applications
ISSN:
0166-8641
Page Range / eLocation ID:
109444
Subject(s) / Keyword(s):
Equivariant homotopy Witt complex Witt vectors Topological Hochschild homology
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We describe a construction of the cyclotomic structure on topological Hochschild homology (THH) of a ring spectrum using the Hill-Hopkins-Ravenel multiplicative norm. Our analysis takes place entirely in the category of equivariant orthogonal spectra, avoiding use of the Bökstedt coherence machinery. We are also able to define two relative versions of topological cyclic homology (TC) and TR-theory: one starting with a ring C_n-spectrum and one starting with an algebra over a cyclotomic commutative ring spectrum A. We describe spectral sequences computing the relative theory over A in terms of TR over the sphere spectrum and vice versa. Furthermore, our construction permits a straightforward definition of the Adams operations on TR and TC. 
    more » « less
  2. Abstract Shadows for bicategories, defined by Ponto, provide a useful framework that generalizes classical and topological Hochschild homology. In this paper, we define Hochschild-type invariants for monoids in a symmetric monoidal, simplicial model category $$\mathsf V$$, as well as for small $$\mathsf V$$-categories. We show that each of these constructions extends to a shadow on an appropriate bicategory, which implies in particular that they are Morita invariant. We also define a generalized theory of Hochschild homology twisted by an automorphism and show that it is Morita invariant. Hochschild homology of Green functors and $$C_n$$-twisted topological Hochschild homology fit into this framework, which allows us to conclude that these theories are Morita invariant. We also study linearization maps relating the topological and algebraic theories, proving that the linearization map for topological Hochschild homology arises as a lax shadow functor, and constructing a new linearization map relating topological restriction homology and algebraic restriction homology. Finally, we construct a twisted Dennis trace map from the fixed points of equivariant algebraic $$K$$-theory to twisted topological Hochschild homology. 
    more » « less
  3. null (Ed.)
    Abstract In this paper, we introduce and study representation homology of topological spaces, which is a natural homological extension of representation varieties of fundamental groups. We give an elementary construction of representation homology parallel to the Loday–Pirashvili construction of higher Hochschild homology; in fact, we establish a direct geometric relation between the two theories by proving that the representation homology of the suspension of a (pointed connected) space is isomorphic to its higher Hochschild homology. We also construct some natural maps and spectral sequences relating representation homology to other homology theories associated with spaces (such as Pontryagin algebras, $${{\mathbb{S}}}^1$$-equivariant homology of the free loop space, and stable homology of automorphism groups of f.g. free groups). We compute representation homology explicitly (in terms of known invariants) in a number of interesting cases, including spheres, suspensions, complex projective spaces, Riemann surfaces, and some 3-dimensional manifolds, such as link complements in $${\mathbb{R}}^3$$ and the lens spaces $ L(p,q) $. In the case of link complements, we identify the representation homology in terms of ordinary Hochschild homology, which gives a new algebraic invariant of links in $${\mathbb{R}}^3$$. 
    more » « less
  4. We perform Hochschild homology calculations in the algebro-geometric setting of motives over algebraically closed fields. The homotopy ring of motivic Hochschild homology contains torsion classes that arise from the mod-p motivic Steenrod algebra and generating functions defined on the natural numbers with finite non-empty support. Under Betti realization, we recover Bökstedt’s calculation of the topological Hochschild homology of finite prime fields. 
    more » « less
  5. abstract: In the early 1940s, P. A. Smith showed that if a finite $$p$$-group $$G$$ acts on a finite dimensional complex $$X$$ that is mod $$p$$ acyclic, then its space of fixed points, $X^G$, will also be mod $$p$$ acyclic. In their recent study of the Balmer spectrum of equivariant stable homotopy theory, Balmer and Sanders were led to study a question that can be shown to be equivalent to the following: if a $$G$$-space $$X$$ is a equivariant homotopy retract of the $$p$$-localization of a based finite $$G$$-C.W. complex, given $H 
    more » « less