skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bacterial Communities Associated with the Leaves and the Roots of Salt Marsh Plants of Bayfront Beach, Mobile, Alabama, USA
Salt marshes are highly dynamic and biologically diverse ecosystems that serve as natural habitats for numerous salt-tolerant plants (halophytes). We investigated the bacterial communities associated with the roots and leaves of plants growing in the coastal salt marshes of the Bayfront Beach, located in Mobile, Alabama, United States. We compared external (epiphytic) and internal (endophytic) communities of both leaf and root plant organs. Using 16S rDNA amplicon sequencing methods, we identified 10 bacterial phyla and 59 different amplicon sequence variants (ASVs) at the genus level. Bacterial strains belonging to the phyla Proteobacteria, Bacteroidetes, and Firmicutes were highly abundant in both leaf and root samples. At the genus level, sequences of the genus Pseudomonas were common across all four sample types, with the highest abundance found in the leaf endophytic community. Additionally, Pantoea was found to be dominant in leaf tissue compared to roots. Our study revealed that plant habitat (internal vs. external for leaves and roots) was a determinant of the bacterial community structure. Co-occurrence network analyses enabled us to discern the intricate characteristics of bacterial taxa. Our network analysis revealed varied levels of ASV complexity in the epiphytic networks of roots and leaves compared to the endophytic networks. Overall, this study advances our understanding of the intricate composition of the bacterial microbiota in habitats (epiphytic and endophytic) and organs (leaf and root) of coastal salt marsh plants and suggests that plants might recruit habitat- and organ-specific bacteria to enhance their tolerance to salt stress.  more » « less
Award ID(s):
2514459
PAR ID:
10612946
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Microorganisms
Volume:
12
Issue:
8
ISSN:
2076-2607
Page Range / eLocation ID:
1595
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Plant microbiomes are known to influence host fitness and ecosystem functioning, but mechanisms regulating their structure are poorly understood.Here, we explored the assembly mechanisms of leaf epiphytic and endophytic bacterial communities using a subtropical forest biodiversity experiment.Both epiphytic and endophytic bacterial diversity increased as host tree diversity increased. However, the increased epiphytic diversity in more diverse forests was driven by greater epiphytic diversity (i.e. greaterα‐diversity) on individual trees, whereas the increased endophytic diversity in more diverse forests was driven by greater dissimilarity in endophytic composition (i.e. greaterβ‐diversity) among trees. Mechanistically, responses of epiphytes to changes in host diversity were consistent with mass effects, whereas responses of endophytes were consistent with species sorting.Synthesis. These results provided novel experimental evidence that biodiversity declines of plant species will lead to biodiversity declines of plant‐associated microbiomes, but the underlying mechanism may differ between habitats on the plant host. 
    more » « less
  2. Non-structural carbohydrates (NSCs), as the labile fraction and dominant carbon currency, are essential mediators of plant adaptation to environments. However, whether and how NSC coordinates with plant economic strategy frameworks, particularly the well-recognized leaf economics spectrums (LES) and root economics space (RES), remains unclear. We examined the relationships between NSC and key plant economics traits in leaves and fine roots across 90 alpine coniferous populations on the Tibetan Plateau, China. We observed contrasting coordination of NSC with economics traits in leaves and roots. Leaf total NSC and soluble sugar aligned with the leaf economic spectrum, conveying a trade-off between growth and storage in leaves. However, NSC in roots was independent of the root economic spectrum, but highly coordinated with root foraging, with more starch and less sugar in forage-efficient, thinner roots. Further, NSC-trait coordination in leaves and roots was, respectively, driven by local temperature and precipitation. These findings highlight distinct roles of NSC in shaping the above- and belowground multidimensional economics trait space, and NSC-based carbon economics provides a mechanistic understanding of how plants adapt to heterogeneous habitats and respond to environmental changes. 
    more » « less
  3. null (Ed.)
    Microbiomes from maize and soybean were characterized in a long-term three-crop rotation research site, under four different land management strategies, to begin unraveling the effects of common farming practices on microbial communities. The fungal and bacterial communities of leaves, stems, and roots in host species were characterized across the growing season using amplicon sequencing and compared with the results of a similar study on wheat. Communities differed across hosts and among plant growth stages and organs, and these effects were most pronounced in the bacterial communities of the wheat and maize phyllosphere. Roots consistently showed the highest number of bacterial operational taxonomic units compared with aboveground organs, whereas the α-diversity of fungi was similar between above- and belowground organs. Network analyses identified putatively influential members of the microbial communities of the three host plant species. The fungal taxa specific to roots, stems, or leaves were examined to determine whether the specificity reflected their life histories based on previous studies. The analysis suggests that fungal spore traits are drivers of organ specificity in the fungal community. Identification of influential taxa in the microbial community and understanding how community structure of specific crop organs is formed will provide a critical resource for manipulations of microbial communities. The ability to predict how organ-specific communities are influenced by spore traits will enhance our ability to introduce them sustainably. 
    more » « less
  4. The breadth and depth of plant leaf metabolomes have been implicated in key interactions with plant enemies aboveground. In particular, divergence in plant species chemical composition—amongst neighbors, relatives, or both—is often suggested as a means of escape from insect herbivore enemies. Plants also experience strong pressure from enemies such as belowground pathogens; however, little work has been carried out to examine the evolutionary trajectories of species’ specialized chemistries in both roots and leaves. Here, we examine the GCMS detectable phytochemistry (for simplicity, hereafter referred to as specialized volatile metabolites) of the tropical tree genus Protium, testing the hypothesis that phenotypic divergence will be weaker belowground compared to aboveground due to more limited dispersal by enemies. We found that, after controlling for differences in chemical richness, roots expressed less structurally diverse compounds than leaves, despite having higher numbers of specialized volatile metabolites, and that species’ phylogenetic distance was only positively correlated with compound structural distance in roots, not leaves. Taken together, our results suggest that root specialized volatile metabolites exhibit significantly less phenotypic divergence than leaf specialized metabolites and may be under relaxed selection pressure from enemies belowground. 
    more » « less
  5. Abstract Heterotrophic activity, primarily driven by sulfate-reducing prokaryotes, has traditionally been linked to nitrogen fixation in the root zone of coastal marine plants, leaving the role of chemolithoautotrophy in this process unexplored. Here, we show that sulfur oxidation coupled to nitrogen fixation is a previously overlooked process providing nitrogen to coastal marine macrophytes. In this study, we recovered 239 metagenome-assembled genomes from a salt marsh dominated by the foundation plantSpartina alterniflora, including diazotrophic sulfate-reducing and sulfur-oxidizing bacteria. Abundant sulfur-oxidizing bacteria encode and highly express genes for carbon fixation (RuBisCO), nitrogen fixation (nifHDK) and sulfur oxidation (oxidative-dsrAB), especially in roots stressed by sulfidic and reduced sediment conditions. Stressed roots exhibited the highest rates of nitrogen fixation and expression level of sulfur oxidation and sulfate reduction genes. Close relatives of marine symbionts from theCandidatusThiodiazotropha genus contributed ~30% and ~20% of all sulfur-oxidizingdsrAand nitrogen-fixingnifKtranscripts in stressed roots, respectively. Based on these findings, we propose that the symbiosis betweenS. alternifloraand sulfur-oxidizing bacteria is key to ecosystem functioning of coastal salt marshes. 
    more » « less