skip to main content


Title: Influence of Plant Host and Organ, Management Strategy, and Spore Traits on Microbiome Composition
Microbiomes from maize and soybean were characterized in a long-term three-crop rotation research site, under four different land management strategies, to begin unraveling the effects of common farming practices on microbial communities. The fungal and bacterial communities of leaves, stems, and roots in host species were characterized across the growing season using amplicon sequencing and compared with the results of a similar study on wheat. Communities differed across hosts and among plant growth stages and organs, and these effects were most pronounced in the bacterial communities of the wheat and maize phyllosphere. Roots consistently showed the highest number of bacterial operational taxonomic units compared with aboveground organs, whereas the α-diversity of fungi was similar between above- and belowground organs. Network analyses identified putatively influential members of the microbial communities of the three host plant species. The fungal taxa specific to roots, stems, or leaves were examined to determine whether the specificity reflected their life histories based on previous studies. The analysis suggests that fungal spore traits are drivers of organ specificity in the fungal community. Identification of influential taxa in the microbial community and understanding how community structure of specific crop organs is formed will provide a critical resource for manipulations of microbial communities. The ability to predict how organ-specific communities are influenced by spore traits will enhance our ability to introduce them sustainably.  more » « less
Award ID(s):
1637653 1832042
NSF-PAR ID:
10281348
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Phytobiomes Journal
Volume:
5
Issue:
2
ISSN:
2471-2906
Page Range / eLocation ID:
202 to 219
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Investigations of plant-soil feedbacks (PSF) and plant-microbe interactions often rely exclusively on greenhouse experiments, yet we have little understanding of how, and when, results can be extrapolated to explain phenomena in nature. A systematic comparison of microbial communities using the same host species across study environments can inform the generalizability of such experiments. We used Illumina MiSeq sequencing to characterize the root-associated fungi of two foundation grasses from a greenhouse PSF experiment, a field PSF experiment, field monoculture stands, and naturally occurring resident plants in the field. A core community consisting < 10% of total fungal OTU richness but > 50% of total sequence abundance occurred in plants from all study types, demonstrating the ability of field and greenhouse experiments to capture the dominant component of natural communities. Fungal communities were plant species-specific across the study types, with the core community showing stronger host specificity than peripheral taxa. Roots from the greenhouse and field PSF experiments had lower among sample variability in community composition and higher diversity than those from naturally occurring, or planted monoculture plants from the field. Core and total fungal composition differed substantially across study types, and dissimilarity between fungal communities did not predict plant-soil feedbacks measured in experiments. These results suggest that rhizobiome assembly mechanisms in nature differ from the dynamics of short-term, inoculation studies. Our results validate the efficacy of common PSF experiment designs to test soil inoculum effects, and highlight the challenges of scaling the underlying microbial mechanisms of plant responses from whole-community inoculation experiments to natural ecosystems. 
    more » « less
  2. Bulgarelli, Davide (Ed.)
    ABSTRACT The composition of microbial communities found in association with plants is influenced by host phenotype and genotype. However, the ways in which specific genetic architectures of host plants shape microbiomes are unknown. Genome duplication events are common in the evolutionary history of plants and influence many important plant traits, and thus, they may affect associated microbial communities. Using experimentally induced whole-genome duplication (WGD), we tested the effect of WGD on rhizosphere bacterial communities in Arabidopsis thaliana . We performed 16S rRNA amplicon sequencing to characterize differences between microbiomes associated with specific host genetic backgrounds (Columbia versus Landsberg) and ploidy levels (diploid versus tetraploid). We modeled relative abundances of bacterial taxa using a hierarchical Bayesian approach. We found that host genetic background and ploidy level affected rhizosphere community composition. We then tested to what extent microbiomes derived from a specific genetic background or ploidy level affected plant performance by inoculating sterile seedlings with microbial communities harvested from a prior generation. We found a negative effect of the tetraploid Columbia microbiome on growth of all four plant genetic backgrounds. These findings suggest an interplay between host genetic background and ploidy level and bacterial community assembly with potential ramifications for host fitness. Given the prevalence of ploidy-level variation in both wild and managed plant populations, the effects on microbiomes of this aspect of host genetic architecture could be a widespread driver of differences in plant microbiomes. IMPORTANCE Plants influence the composition of their associated microbial communities, yet the underlying host-associated genetic determinants are typically unknown. Genome duplication events are common in the evolutionary history of plants and affect many plant traits. Using Arabidopsis thaliana , we characterized how whole-genome duplication affected the composition of rhizosphere bacterial communities and how bacterial communities associated with two host plant genetic backgrounds and ploidy levels affected subsequent plant growth. We observed an interaction between ploidy level and genetic background that affected both bacterial community composition and function. This research reveals how genome duplication, a widespread genetic feature of both wild and crop plant species, influences bacterial assemblages and affects plant growth. 
    more » « less
  3. null (Ed.)
    Plant leaves harbor complex microbial communities that influence plant health and productivity. Nevertheless, a detailed understanding of phyllosphere community assembly and drivers is needed, particularly for phyllosphere fungi. Here, we investigated seasonal dynamics of epiphytic phyllosphere fungal communities in switchgrass (Panicum virgatum L.), a focal bioenergy crop. We also leverage previously published data on switchgrass phyllosphere bacterial communities from the same experimental plants, allowing us to compare fungal and bacterial dynamics and explore interdomain network associations in the switchgrass phyllosphere. Overall, we found a strong impact of sampling date on fungal community composition, with multiple taxonomic levels exhibiting clear temporal patterns in relative abundance. In addition, leaf nitrogen concentration, leaf dry matter content, plant height, and minimum daily air temperature explained significant variation in phyllosphere fungal communities, likely due to their correlation with sampling date. Finally, among the core taxa, fungi–bacteria network associations were much more common than bacteria–bacteria associations, suggesting the importance of interdomain phylogenetic diversity in microbiome assembly. Although our findings highlight the complexity of phyllosphere microbiome assembly, the clear temporal patterns in lineage-specific fungal abundances give promise to the potential for accurately predicting shifts in fungal phyllosphere communities throughout the growing season, a key research priority for sustainable agriculture. [Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license . 
    more » « less
  4. ABSTRACT Plant roots shape the rhizosphere community by secreting compounds that recruit diverse bacteria. Colonization of various plant roots by the motile alphaproteobacterium Azospirillum brasilens e causes increased plant growth, root volume, and crop yield. Bacterial chemotaxis in this and other motile soil bacteria is critical for competitive colonization of the root surfaces. The role of chemotaxis in root surface colonization has previously been established by endpoint analyses of bacterial colonization levels detected a few hours to days after inoculation. More recently, microfluidic devices have been used to study plant-microbe interactions, but these devices are size limited. Here, we use a novel slide-in chamber that allows real-time monitoring of plant-microbe interactions using agriculturally relevant seedlings to characterize how bacterial chemotaxis mediates plant root surface colonization during the association of A. brasilens e with Triticum aestivum (wheat) and Medicago sativa (alfalfa) seedlings. We track A. brasilense accumulation in the rhizosphere and on the root surfaces of wheat and alfalfa. A. brasilense motile cells display distinct chemotaxis behaviors in different regions of the roots, including attractant and repellent responses that ultimately drive surface colonization patterns. We also combine these observations with real-time analyses of behaviors of wild-type and mutant strains to link chemotaxis responses to distinct chemicals identified in root exudates to specific chemoreceptors that together explain the chemotactic response of motile cells in different regions of the roots. Furthermore, the bacterial second messenger c-di-GMP modulates these chemotaxis responses. Together, these findings illustrate dynamic bacterial chemotaxis responses to rhizosphere gradients that guide root surface colonization. IMPORTANCE Plant root exudates play critical roles in shaping rhizosphere microbial communities, and the ability of motile bacteria to respond to these gradients mediates competitive colonization of root surfaces. Root exudates are complex chemical mixtures that are spatially and temporally dynamic. Identifying the exact chemical(s) that mediates the recruitment of soil bacteria to specific regions of the roots is thus challenging. Here, we connect patterns of bacterial chemotaxis responses and sensing by chemoreceptors to chemicals found in root exudate gradients and identify key chemical signals that shape root surface colonization in different plants and regions of the roots. 
    more » « less
  5. Abstract Background

    Root and soil microbial communities constitute the below-ground plant microbiome, are drivers of nutrient cycling, and affect plant productivity. However, our understanding of their spatiotemporal patterns is confounded by exogenous factors that covary spatially, such as changes in host plant species, climate, and edaphic factors. These spatiotemporal patterns likely differ across microbiome domains (bacteria and fungi) and niches (root vs. soil).

    Results

    To capture spatial patterns at a regional scale, we sampled the below-ground microbiome of switchgrass monocultures of five sites spanning > 3 degrees of latitude within the Great Lakes region. To capture temporal patterns, we sampled the below-ground microbiome across the growing season within a single site. We compared the strength of spatiotemporal factors to nitrogen addition determining the major drivers in our perennial cropping system. All microbial communities were most strongly structured by sampling site, though collection date also had strong effects; in contrast, nitrogen addition had little to no effect on communities. Though all microbial communities were found to have significant spatiotemporal patterns, sampling site and collection date better explained bacterial than fungal community structure, which appeared more defined by stochastic processes. Root communities, especially bacterial, were more temporally structured than soil communities which were more spatially structured, both across and within sampling sites. Finally, we characterized a core set of taxa in the switchgrass microbiome that persists across space and time. These core taxa represented < 6% of total species richness but > 27% of relative abundance, with potential nitrogen fixing bacteria and fungal mutualists dominating the root community and saprotrophs dominating the soil community.

    Conclusions

    Our results highlight the dynamic variability of plant microbiome composition and assembly across space and time, even within a single variety of a plant species. Root and soil fungal community compositions appeared spatiotemporally paired, while root and soil bacterial communities showed a temporal lag in compositional similarity suggesting active recruitment of soil bacteria into the root niche throughout the growing season. A better understanding of the drivers of these differential responses to space and time may improve our ability to predict microbial community structure and function under novel conditions.

     
    more » « less