skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Reducing the Cost of TD-CI Simulations of Strong Field Ionization
Strong field ionization of molecules by intense laser pulses can be simulated by time-dependent configuration interaction (TD-CI) with a complex absorbing potential (CAP). Standard molecular basis sets need to be augmented with several sets of diffuse functions for effective interaction with the CAP. This dramatically increases the number of configurations and the cost of the TD-CI simulations as the size of the molecules increases. The cost can be reduced by making use of spin symmetry and by employing an orbital energy cut-off to limit the number of virtual orbitals used to construct the excited configurations. Greater reductions in the number of virtual orbitals can be obtained by examining their interaction with the absorbing potential during simulations and their contributions to the strong field ionization rate. This can be determined from the matrix elements of the absorbing potential and the TD-CI coefficients from test simulations. Compared to a simple 3 hartree cut-off in the orbital energies, these approaches reduce the number of virtual orbitals by 20% - 35% for neutral molecules and 5%-10% for cations. As a result, the cost of simulations is reduced by 35% - 60% for neutral molecules and 5% - 10% for cations. The number of virtual orbitals needed can also be estimated by second-order perturbation theory without the need for test simulations. The number of virtual orbitals can be reduced further by adapting orbitals to the laser field using natural orbitals derived from test simulations. This is particularly effective for cations, yielding reductions of more than 20%.  more » « less
Award ID(s):
1856437
PAR ID:
10612967
Author(s) / Creator(s):
;
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
The Journal of Physical Chemistry A
Volume:
128
Issue:
35
ISSN:
1089-5639
Page Range / eLocation ID:
7440 to 7450
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Strong field ionization of neutral iodoacetylene (HCCI) can produce a coherent superposition of the X and A cations. This superposition results in charge migration between the CC π orbital and the iodine π -type lone pair which can be monitored by strong field ionization with short, intense probe pulses. Strong field ionization of the X and A states of HCCI cation was simulated with time-dependent configuration interaction using singly ionized configurations and singly excited, singly ionized configurations (TD-CISD-IP) and an absorbing boundary. Studies with static fields were used to obtain the 3-dimensional angular dependence of instantaneous ionization rates by strong fields and the orbitals involved in producing the cations and dications. The frequency of charge oscillation is determined by the energy separation of the X and A states; this separation can change depending on the direction and strength of the field. Furthermore, fields along the molecular axis can cause extensive mixing between the field-free X and A configurations. For coherent superpositions of the X and A states, the charge oscillations are characterized by two frequencies–the driving frequency of the laser field of the probe pulse and the intrinsic frequency due to the energy separation between the X and A states. For linear and circularly polarized pulses, the ionization rates show marked differences that depend on the polarization direction of the pulse, the carrier envelope phase and initial phase of the superposition. Varying the initial phase of the superposition at the beginning of the probe pulse is analogous to changing the delay between the pump and probe pulses. The charge oscillation in the coherent superposition of the X and A states results in maxima and minima in the ionization yield as a function of the superposition phase. 
    more » « less
  2. Algebraic diagrammatic construction (ADC) theory is a computationally efficient and accurate approach for simulating electronic excitations in chemical systems. However, for the simulations of excited states in molecules with unpaired electrons, the performance of ADC methods can be affected by the spin contamination in unrestricted Hartree–Fock (UHF) reference wavefunctions. In this work, we benchmark the accuracy of ADC methods for electron attachment and ionization of open-shell molecules with the UHF reference orbitals (EA/IP-ADC/UHF) and develop an approach to quantify the spin contamination in charged excited states. Following this assessment, we demonstrate that the spin contamination can be reduced by combining EA/IP-ADC with the reference orbitals from restricted open-shell Hartree–Fock (ROHF) or orbital-optimized Møller–Plesset perturbation (OMP) theories. Our numerical results demonstrate that for open-shell systems with strong spin contamination in the UHF reference, the third-order EA/IP-ADC methods with the ROHF or OMP reference orbitals are similar in accuracy to equation-of-motion coupled cluster theory with single and double excitations. 
    more » « less
  3. We report time-dependent photoelectron spectra recorded with a single-photon ionization setup and extensive simulations of the same spectra for the excited-state dynamics of 2-thiouracil (2TU) in the gas phase. We find that single-photon ionization produces very similar results as two-photon ionization, showing that the probe process does not have a strong influence on the measured dynamics. The good agreement between the single-photon ionization experiments and the simulations shows that the norms of Dyson orbitals allow for qualitatively describing the ionization probabilities of 2TU. This reasonable performance of Dyson norms is attributed to the particular electronic structure of 2TU, where all important neutral and ionic states involve similar orbital transitions and thus the shape of the Dyson orbitals do not strongly depend on the initial neutral and final ionic state. We argue that similar situations should also occur in other biologically relevant thio-nucleobases, and that the time-resolved photoelectron spectra of these bases could therefore be adequately modeled with the techniques employed here. 
    more » « less
  4. Strong field ionization of neutral iodoacetylene (HCCI) can produce a coherent superposition of the X and A cations and results in charge migration between the CC  orbital and the iodine -type lone pair. This charge migration causes oscillations in the rate of strong field ionization of the cation to the dication that can be monitored using intense, few cycle probe pulses. The dynamics and strong field ionization of the coherent superposition the X and A states of HCCI+ have been modelled by time dependent configuration interaction simulations. When the nuclei are allowed to move, the electronic wavefunctions need to be multiplied by vibrational wavefunctions. Nuclear motion has been modelled by vibrational packets moving on quadratic approximations to the potential energy surfaces for the X and A states of the cation. The overlap of the vibrational wavepackets decays in about 10-15 fs. Consequently, the oscillations in the strong field ionization decay on the same time scale. A revival of the vibrational overlap and in the oscillations of the strong field ionization is seen at 60 – 110 fs. TDCI simulations show that the decay and revival of the charge migration can be monitored by strong field ionization with intense 2 and 4 cycle linearly polarized 800 nm pulses. The revival is also seen with 7 cycle pulses. 
    more » « less
  5. For simulations of strong field ionization using time-dependent configuration with a complex absorbing potential (TDCI-CAP), standard molecular basis set must be augmented by several sets of diffuse functions to support the wavefunction as it is distorted by the strong field and interacts with the absorbing potential. Various sets of diffuse functions used in previous studies have been extended and evaluated for their ability to model the angular dependence of strong field ionization. These sets include diffuse s, p, d and f gaussian functions with selected even-tempered exponents of the form 0.0001×2n placed on each atom. For single-centered test cases, the largest contribution to the ionization rate is from functions with a maximum in the radial distribution close to the onset of the complex absorbing potential, while functions with smaller exponents also contributed to the rate. For molecules, diffuse functions on adjacent centers overlap strongly, leading to linear dependencies. The transformation to remove these linear dependencies mixes functions of different angular momenta making it difficult to assess the importance of individual s, p, d and f functions in simulating the rate for molecules. As an alternative, a hierarchy of diffuse basis sets was constructed starting with a small set and adding one or two functions at a time. These basis sets were evaluated for their ability to reproduce the rate and the shape of the angular dependence of strong field ionization. When combined with the aug-cc-pVTZ molecular basis set and an absorbing potential starting at 3.5 times the van der Waals radius for each atom, the most diffuse s, p, d and f functions need to have exponents of 0.0032, 0.0032, 0.0064 and 0.0064, respectively, or smaller. Strong field ionization from electronegative atoms such as oxygen required additional f functions with tight exponents of 0.0512 and 0.1024. Diffuse basis sets that perform well for the angular dependence of the ionization rate with a static field are equally effective for strong field ionization with a linearly polarized 7 cycle 800 nm pulse. 
    more » « less