We present an implementation of the relativistic ionization-potential (IP) equation-of-motion coupled-cluster (EOMCC) with up to 3-hole–2-particle (3h2p) excitations that makes use of the molecular mean-field exact two-component framework and the full Dirac–Coulomb–Breit Hamiltonian. The closed-shell nature of the reference state in an X2C-IP-EOMCC calculation allows for accurate predictions of spin–orbit splittings in open-shell molecules without breaking degeneracies, as would occur in an excitation-energy EOMCC calculation carried out directly on an unrestricted open-shell reference. We apply X2C-IP-EOMCC to the ground and first excited states of the HCCX+ (X = Cl, Br, I) cations, where it is demonstrated that a large basis set (i.e., quadruple-zeta quality) and 3h2p correlation effects are necessary for accurate absolute energetics. The maximum error in calculated adiabatic IPs is on the order of 0.1 eV, whereas spin–orbit splittings themselves are accurate to ≈0.01 eV, as compared to experimentally obtained values. 
                        more » 
                        « less   
                    
                            
                            Quantifying and reducing spin contamination in algebraic diagrammatic construction theory of charged excitations
                        
                    
    
            Algebraic diagrammatic construction (ADC) theory is a computationally efficient and accurate approach for simulating electronic excitations in chemical systems. However, for the simulations of excited states in molecules with unpaired electrons, the performance of ADC methods can be affected by the spin contamination in unrestricted Hartree–Fock (UHF) reference wavefunctions. In this work, we benchmark the accuracy of ADC methods for electron attachment and ionization of open-shell molecules with the UHF reference orbitals (EA/IP-ADC/UHF) and develop an approach to quantify the spin contamination in charged excited states. Following this assessment, we demonstrate that the spin contamination can be reduced by combining EA/IP-ADC with the reference orbitals from restricted open-shell Hartree–Fock (ROHF) or orbital-optimized Møller–Plesset perturbation (OMP) theories. Our numerical results demonstrate that for open-shell systems with strong spin contamination in the UHF reference, the third-order EA/IP-ADC methods with the ROHF or OMP reference orbitals are similar in accuracy to equation-of-motion coupled cluster theory with single and double excitations. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2044648
- PAR ID:
- 10407663
- Date Published:
- Journal Name:
- The Journal of Chemical Physics
- Volume:
- 157
- Issue:
- 4
- ISSN:
- 0021-9606
- Page Range / eLocation ID:
- 044106
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            We present a new theoretical approach for the simulations of X-ray photoelectron spectra of strongly correlated molecular systems that combines multireference algebraic diagrammatic construction theory (MR-ADC) [ J. Chem. Phys. , 2018, 149 , 204113] with a core–valence separation (CVS) technique. The resulting CVS-MR-ADC approach has a low computational cost while overcoming many challenges of the conventional multireference theories associated with the calculations of excitations from inner-shell and core molecular orbitals. Our results demonstrate that the CVS-MR-ADC methods are as accurate as single-reference ADC approximations for predicting core ionization energies of weakly-correlated molecules, but are more accurate and reliable for systems with a multireference character, such as a stretched nitrogen molecule, ozone, and isomers of the benzyne diradical. We also highlight the importance of multireference effects for the description of core–hole screening that determines the relative spacing and order of peaks in the XPS spectra of strongly correlated systems.more » « less
- 
            Abstract While the natural transition orbital (NTO) method has allowed electronic excitations from time‐dependent Hartree‐Fock and density functional theory to be viewed in a traditional orbital picture, the extension to multicomponent molecular orbitals such as those used in relativistic two‐component methods or generalized Hartree‐Fock (GHF) or generalized Kohn‐Sham (GKS) is less straightforward due to mixing of spin‐components and the inherent inclusion of spin‐flip transitions in time‐dependent GHF/GKS. An extension of single‐component NTOs to the two‐component framework is presented, in addition to a brief discussion of the practical aspects of visualizing two‐component complex orbitals. Unlike the single‐component analog, the method explicitly describes the spin and frequently obtains solutions with several significant orbital pairs. The method is presented using calculations on a mercury atom and a CrO2Cl2complex.more » « less
- 
            The simulation of excited states at low computational cost remains an open challenge for electronic structure (ES) methods. While much attention has been given to orthogonal ES methods, relatively little work has been done to develop nonorthogonal ES methods for excited states, particularly those involving nonorthogonal orbital optimization. We present here a numerically stable formulation of the Resonating Hartree–Fock (ResHF) method that uses the matrix adjugate to remove numerical instabilities arising from nearly orthogonal orbitals, and as a result, we demonstrate improvements to ResHF wavefunction optimization. We then benchmark the performance of ResHF against complete active space self-consistent field in the avoided crossing of LiF, the torsional rotation of ethene, and the singlet–triplet energy gaps of a selection of small molecules. ResHF is a promising excited state method because it incorporates the orbital relaxation of state-specific methods, while retaining the correct state crossings of state-averaged approaches. Our open-source ResHF implementation, yucca, is available on GitLab.more » « less
- 
            Accurate simulation of electronic excited states of large chromophores is often difficult due to the computationally expensive nature of existing methods. Common approximations such as fragmentation methods that are routinely applied to ground-state calculations of large molecules are not easily applicable to excited states due to the delocalized nature of electronic excitations in most practical chromophores. Thus, special techniques specific to excited states are needed. Δ-SCF methods are one such approximation that treats excited states in a manner analogous to that for ground-state calculations, accelerating the simulation of excited states. In this work, we employed the popular initial maximum overlap method (IMOM) to avoid the variational collapse of the electronic excited state orbitals to the ground state. We demonstrate that it is possible to obtain emission energies from the first singlet (S1) excited state of many thousands of dye molecules without any external intervention. Spin correction was found to be necessary to obtain accurate excitation and emission energies. Using thousands of dye-like chromophores and various solvents (12,318 combinations), we show that the spin-corrected initial maximum overlap method accurately predicts emission maxima with a mean absolute error of only 0.27 eV. We further improved the predictive accuracy using linear fit-based corrections from individual dye classes to achieve an impressive performance of 0.17 eV. Additionally, we demonstrate that IMOM spin density can be used to identify the dye class of chromophores, enabling improved prediction accuracy for complex dye molecules, such as dyads (chromophores containing moieties from two different dye classes). Finally, the convergence behavior of IMOM excited state SCF calculations is analyzed briefly to identify the chemical space, where IMOM is more likely to fail.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    