skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Highly stereoselective synthesis of α-glycosylated carboxylic acids by phenanthroline catalysis
Carbohydrate molecules with an alpha-glycosylated carboxylic acid motif provide access to biologically relevant chemical space but are difficult to synthesize with high selectivity. To address this challenge, we report a mild and operationally simple protocol to synthesize a wide range of functionally and structurally diverse alpha-glycosylated carboxylic acids in good yields with high diastereoselectivity. While there is no apparent correlation between reaction conversion and the pKa of carboxylic acids, there is a notable trend in selectivity. Carboxylic acids with a pKa ranging from 4 to 5 exhibit high selectivity, whereas those with a pKa of 2.5 or lower do not display the same level of selectivity. Our strategy utilizes readily available 2,9-dibutyl-1,10-phenanthroline as an effective nucleophilic catalyst to displace a bromide leaving group from an activated sugar electrophile in a nucleophilic substitution reaction, forming phenanthrolinium intermediates. The attack of the carboxylic acid takes place from the alpha-face of the more reactive intermediate, resulting in the formation of alpha-glycosylated carboxylic acid. Previous calculations suggested that the hydroxyl group participates in the hydrogen bond interaction with the basic C2-oxygen of a sugar moiety and serves as a nucleophile to attack the C1-anomeric center. In contrast, our computational studies reveal that the carbonyl oxygen of the carboxylic acid serves as a nucleophile, with the carboxylic acid-OH forming a hydrogen bond with the basic C2-oxygen of the sugar moiety. This strong hydrogen bond (1.65 Å) interaction increases the nucleophilicity of the carbonyl oxygen of carboxylic acid and plays a critical role in the selectivity-determining step. In contrast, when alcohol acts as a nucleophile, this scenario is not possible since the -OH group of the alcohol interacts with the C2-oxygen and attacks the C1-anomeric carbon of the sugar moiety. This is also reflected in alcohol-OH's weak hydrogen bond (1.95 Å) interaction with the C2-oxygen. The O(C2)-HO (carboxylic acid) angle was measured to be 171° while the O(C2)-HO (alcohol) angle at 122° deviates from linearity, resulting in weak hydrogen bonding.  more » « less
Award ID(s):
1856437
PAR ID:
10612970
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Royal Society of Chemistry
Date Published:
Journal Name:
Organic Chemistry Frontiers
Volume:
11
Issue:
20
ISSN:
2052-4129
Page Range / eLocation ID:
5769 to 5783
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Chang, Sukbok (Ed.)
    1,2-cis-Furanosides are present in various biomedically relevant glycosides, and their stereoselective synthesis remains a significant challenge. In this vein, we have developed a stereoselective approach to 1,2-cis-furanosylations using earth-abundant copper catalysis. This protocol proceeds under mild conditions at room temperature and employs readily accessible benchtop stable enynalderived furanose donors. This chemistry accommodates a variety of alcohols, including primary, secondary, and tertiary, as well as mannosyl alcohol acceptors, which have been incompatible with most known methods of furanosylation. The resulting 1,2-cisfuranoside products exhibit high yields and anomeric selectivity with both the ribose and arabinose series. Furthermore, the anomeric selectivity is independent of the C2 oxygen-protecting group and the anomeric configuration of the starting donor. Experimental evidence and computational studies support our hypothesis that copper chelation between the C2 oxygen of the furanose donor and an incoming alcohol nucleophile is responsible for the observed 1,2-cisstereoselectivity. 
    more » « less
  2. The title compound, C8H18NO2+·Br·C8H17NO2, crystallizes as the bromide salt of a 50:50 mixture of (triethylazaniumyl)carboxylic acid and the zwitterionic (triethylazaniumyl)carboxylate. The two organic entities are linked by a half-occupied bridging carboxylic acid hydrogen atom that is hydrogen-bonded to the carboxylate group of the second molecule. The tetralkylammonium group adopts a nearly perfect tetrahedral shape around the nitrogen atom with bond lengths that agree with known values. The carboxylic acid/carboxylate group is orientedantito one of the ethyl groups on the ammonium group, and the carbonyl oxygen atom is engaged in intramolecular C—H...O hydrogen bonds. 
    more » « less
  3. The structure of zymonic acid (systematic name: 4-hydroxy-2-methyl-5-oxo-2,5-dihydrofuran-2-carboxylic acid), C 6 H 6 O 5 , which had previously eluded crystallographic determination, is presented here for the first time. It forms by intramolecular condensation of parapyruvic acid, which is the product of aldol condensation of pyruvic acid. A redetermination of the crystal structure of pyruvic acid (systematic name: 2-oxopropanoic acid), C 3 H 4 O 3 , at low temperature (90 K) and with increased precision, is also presented [for the previous structure, see: Harata et al. (1977). Acta Cryst. B 33 , 210–212]. In zymonic acid, the hydroxylactone ring is close to planar (r.m.s. deviation = 0.0108 Å) and the dihedral angle between the ring and the plane formed by the bonds of the methyl and carboxylic acid carbon atoms to the ring is 88.68 (7)°. The torsion angle of the carboxylic acid group relative to the ring is 12.04 (16)°. The pyruvic acid molecule is almost planar, having a dihedral angle between the carboxylic acid and methyl-ketone groups of 3.95 (6)°. Intermolecular interactions in both crystal structures are dominated by hydrogen bonding. The common R 2 2 (8) hydrogen-bonding motif links carboxylic acid groups on adjacent molecules in both structures. In zymonic acid, this results in dimers about a crystallographic twofold of space group C 2/ c , which forces the carboxylic acid group to be disordered exactly 50:50, which scrambles the carbonyl and hydroxyl groups and gives an apparent equalization of the C—O bond lengths [1.2568 (16) and 1.2602 (16) Å]. The other hydrogen bonds in zymonic acid (O—H...O and weak C—H...O), link molecules across a 2 1 -screw axis, and generate an R 2 2 (9) motif. These hydrogen-bonding interactions propagate to form extended pleated sheets in the ab plane. Stacking of these zigzag sheets along c involves only van der Waals contacts. In pyruvic acid, inversion-related molecules are linked into R 2 2 (8) dimers, with van der Waals interactions between dimers as the only other intermolecular contacts. 
    more » « less
  4. Abstract Benzylic and allylic electrophiles are well known to react faster in SN2 reactions than aliphatic electrophiles, but the origins of this enhanced reactivity are still being debated. Galabov, Wu, and Allen recently proposed that electrostatic interactions in the transition state between the nucleophile (Nu) and the sp2carbon (C2) adjacent to the electrophilic carbon (C1) play a key role. To test this secondary electrostatic hypothesis, molecular rotors were designed that form similar through‐space electrostatic interactions with C2 in their bond rotation transition states without forming bonds to C1. This largely eliminates the alternative explanation of stabilizing conjugation effects between C1 and C2 in the transition state. The rotor barriers were strongly correlated with the experimentally measured SN2 free energy. Notably, rotors where C2 was sp2or sp‐hybridized had barriers that were consistently 0.5–2.0 kcal mol−1lower than those for rotors where C2 was sp3‐hybridized. Computational studies of atomic charges were consistent with the formation of stabilizing secondary electrostatic interactions. Further confirmation came from observing the benzylic effect in rotors where the first atom was varied, including oxygen, sulfur, nitrogen, and sp2‐carbon. In summary, these studies provided strong experimental support for the role of secondary electrostatic interactions in the SN2 reaction. 
    more » « less
  5. Abstract As genetic code expansion advances beyondl-α-amino acids to backbone modifications and new polymerization chemistries, delineating what substrates the ribosome can accommodate remains a challenge. TheEscherichia coliribosome tolerates non-l-α-amino acids in vitro, but few structural insights that explain how are available, and the boundary conditions for efficient bond formation are so far unknown. Here we determine a high-resolution cryogenic electron microscopy structure of theE. coliribosome containing α-amino acid monomers and use metadynamics simulations to define energy surface minima and understand incorporation efficiencies. Reactive monomers across diverse structural classes favour a conformational space where the aminoacyl-tRNA nucleophile is <4 Å from the peptidyl-tRNA carbonyl with a Bürgi–Dunitz angle of 76–115°. Monomers with free energy minima that fall outside this conformational space do not react efficiently. This insight should accelerate the in vivo and in vitro ribosomal synthesis of sequence-defined, non-peptide heterooligomers. 
    more » « less