skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Cocoon of the Developing Emerald Jewel Wasp (Ampulex compressa) Resists Cannibalistic Predation of the Zombified Host
Introduction: To reproduce, the parasitoid emerald jewel wasp (Ampulex compressa) envenomates an American cockroach (Periplaneta americana) and barricades it in a hole with an egg on the host’s leg. The larval wasp feeds externally before entering the host and consuming internal organs before forming a cocoon inside the host carcass. Methods: The vulnerability of jewel wasp larvae to predation by juvenile cockroaches was investigated, and data were recorded with time-lapse videography. Results: Cockroaches were found to be predators of parasitized hosts. When parasitized cockroaches were exposed to hungry cockroaches on days 0–8 of development, the developing larva was killed. Eggs were dislodged or consumed, larvae on the leg were eaten, and larvae inside the host were eaten along with the host. On day 9, 80% of the wasp larvae were killed and eaten along with the host. Conversely, on day 10, 90% of the larvae survived. On developmental day 11 or later, the wasp larva always survived, although the host carcass was consumed. Survival depended entirely on whether the cocoon had been completed. Conclusion: The results highlight the vulnerability of larvae to predation and suggest the cocoon defends from insect mandibles. This may explain the unusual feeding behavior of the jewel wasp larvae, which eat the host with remarkable speed, tapping into the host respiratory system in the process, and consuming vital organs early, in contrast to many other parasitoids. Results are discussed in relation to larval wasp behavior, evolution, and development, and potential predators are considered.  more » « less
Award ID(s):
2114264
PAR ID:
10612997
Author(s) / Creator(s):
Publisher / Repository:
Karger
Date Published:
Journal Name:
Brain, Behavior and Evolution
ISSN:
0006-8977
Page Range / eLocation ID:
1 to 10
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Rattlesnakes are widespread mesopredators that are themselves killed and eaten by a host of other predators, including birds of prey and carnivorous mammals. Although anecdotal accounts of rattlesnake depredation are common, there are few quantitative data on encounter rates between rattlesnakes and their predators. Here we review a large database of encounters between rattlesnakes and their predators recorded from field videography of snakes in the sit-and-wait phase of their ambush hunting strategy. We found that, across 8300 hours of observation, adult rattlesnakes of six species and multiple populations exhibit low encounter rates with predators; furthermore, when predators were encountered, we never observed them to attack or kill coiled snakes. Thus, we propose that rattlesnakes are preyed upon while performing other, riskier behaviors associated with moving through the landscape. We also discuss why rattlesnakes are at low risk of predation while hunting on the surface. 
    more » « less
  2. Monarch butterfly (Danaus plexippus L.) declines in eastern North America have prompted milkweed host plant restoration efforts in non-agricultural grasslands. However, grasslands harbor predator communities that exert high predation pressure on monarch eggs and larvae. While diurnal monarch predators are relatively well known, no studies have investigated the contribution of nocturnal monarch predators. We used video cameras to monitor sentinel monarch eggs and fourth instars on milkweed in southern Michigan to identify predators and determine if nocturnally-active species impose significant predation pressure. We observed ten arthropod taxa consuming monarch eggs and larvae, with 74% of egg predation events occurring nocturnally. Taxa observed attacking monarch eggs included European earwigs (Forficula auricularia L.), tree crickets (Oecanthus sp.), lacewing larvae (Neuroptera), plant bugs (Miridae), small milkweed bugs (Lygaeus kalmii Stal), ants (Formicidae), spiders (Araneae: Salticidae and other spp.), harvestmen (Opiliones), and velvet mites (Trombidiformes: Trombidiidae). Larvae were attacked by ground beetles (Calleida sp.), jumping spiders (Araneae: Salticidae), and spined soldier bugs (Podisus maculiventris Say). Our findings provide important information about monarch predator-prey interactions that could be used to develop strategies to conserve monarchs through reducing predation on early life stages. 
    more » « less
  3. Predation is a major source of mortality in the early life stages of fishes and a driving force in shaping fish populations. Theoretical, modeling, and laboratory studies have generated hypotheses that larval fish size, age, growth rate, and development rate affect their susceptibility to predation. Empirical data on predator selection in the wild are challenging to obtain, and most selective mortality studies must repeatedly sample populations of survivors to indirectly examine survivorship. While valuable on a population scale, these approaches can obscure selection by particular predators. In May 2018, along the coast of Washington, USA, we simultaneously collected juvenile quillback rockfish Sebastes maliger from both the environment and the stomachs of juvenile coho salmon Oncorhynchus kisutch . We used otolith microstructure analysis to examine whether juvenile coho salmon were age-, size-, and/or growth-selective predators of juvenile quillback rockfish. Our results indicate that juvenile rockfish consumed by salmon were significantly smaller, slower growing at capture, and younger than surviving (unconsumed) juvenile rockfish, providing direct evidence that juvenile coho salmon are selective predators on juvenile quillback rockfish. These differences in early life history traits between consumed and surviving rockfish are related to timing of parturition and the environmental conditions larval rockfish experienced, suggesting that maternal effects may substantially influence survival at this stage. Our results demonstrate that variability in timing of parturition and sea surface temperature leads to tradeoffs in early life history traits between growth in the larval stage and survival when encountering predators in the pelagic juvenile stage. 
    more » « less
  4. Abstract Mating signals of insects do not only attract their intended receivers but also eavesdropping parasites and/or predators. As a result, an arms race between the host or prey and the eavesdropper ensues, propelling their co‐evolution and potentially contributing to their diversification. Here, we investigate the species interaction of the flyOrmia lineifronsthat usesNeoconocephaluskatydids as hosts for its lethal larvae. We surveyed the host use ofO. lineifronsover a 2‐year period in Kentucky and determined which species were used as hosts, the parasitism rate of each katydid host, and how many generations per year the fly displays. Four of the six surveyedNeoconocephalusspecies were parasitized and killed (Neoconocephalus triops,Neoconocephalus velox,Neoconocephalus robustus,Neoconocephalus nebrascensis) byO. lineifrons. Three of these katydid species were previously not known to be hosts ofO. lineifrons. Two of the six species were not parasitized in either year (Neoconocephalus bivocatus,Neoconocephalus retusus) even thoughO. lineifronswas active when they called. The parasitism rate of each host peaked between 38% and 100% across years. The fly had three distinct generations per year, and each generation used different katydid species as hosts. We discuss the importance of the synchronization of the three fly generations with their hosts as well as potential counteradaptations of the hosts. These semi‐independent arms races could provide valuable insights in the diversification of the hosts and their parasitoid. 
    more » « less
  5. Introduction: Predators can affect prey not only by killing them, but also by causing them to alter their behavior, including patterns of habitat selection. Prey can reduce the risk of predation by moving to habitats where predators are less likely to detect them, less likely to attack, or less likely to succeed. The interaction of such responses to risk with other ecological processes remains relatively unstudied, but in some cases, changes in habitat use to avoid predation may be constrained by competition: larger, dominant competitors should respond freely to predation risk, but the responses of smaller, subordinate competitors may be constrained by the responses of dominant competitors. For large grazing herbivores, an alternative hypothesis proposes that smaller prey species are vulnerable to more predators, and thus should respond more strongly to predation risk. Methods: Here, we tested these two hypotheses with 775 observations of habitat selection by four species of obligate grazers (zebra, wildebeest, puku and oribi) in the immediate presence or absence of four large carnivores (lion, spotted hyena, African wild dog and cheetah) in three ecosystems (Greater Liuwa, Greater Kafue and Luangwa Valley). Patterns of predation within this set were described by observation of 1,105 kills. Results:Our results support the hypothesis that responses to predation risk are strongest for larger, dominant competitors. Even though zebras were killed least often, they showed the strongest shift into cover when carnivores were present. Wildebeest, puku and oribi showed weaker habitat shifts, even though they were more frequently killed. These patterns remained consistent in models that controlled for differences in the hunting mode of the predator (stalking, coursing, or intermediate) and for differences among ecosystems. There was no evidence that smaller species were subject to predation by a broader set of predators. Instead, smaller prey were killed often by smaller predators, and larger prey were killed often by larger predators. Discussion: Broadly, our results show that responses to predation risk interact with interspecific competition. Accounting for such interactions should help to explain the considerable variation in the strength of responses to predation risk that has been observed. 
    more » « less