A<sc>bstract</sc> The phenomenon of cosmological gravitational particle production (CGPP) is expected to occur during the period of inflation and the transition into a hot big bang cosmology. Particles may be produced even if they only couple directly to gravity, and so CGPP provides a natural explanation for the origin of dark matter. In this work we study the gravitational production of massive spin-2 particles assuming two different couplings to matter. We evaluate the full system of mode equations, including the helicity-0 modes, and by solving them numerically we calculate the spectrum and abundance of massive spin-2 particles that results from inflation on a hilltop potential. We conclude that CGPP might provide a viable mechanism for the generation of massive spin-2 particle dark matter during inflation, and we identify the favorable region of parameter space in terms of the spin-2 particle’s mass and the reheating temperature. As a secondary product of our work, we identify the conditions under which such theories admit ghost or gradient instabilities, and we thereby derive a generalization of the Higuchi bound to Friedmann-Robertson-Walker (FRW) spacetimes.
more »
« less
A universal feature for the Higgs phenomenon in Anti de Sitter space
Abstract In Anti de Sitter space both massive and massless high-spin particles can have consistent local interactions. Both can couple to conserved currents. In this paper we show that when the particles have spin one or greater, there exists a universal feature associated to the particle becoming massive: the currents possess a non-vanishing boundary flux.
more »
« less
- Award ID(s):
- 2210349
- PAR ID:
- 10613037
- Editor(s):
- Henneaux, M; Nepomechie, R; Seminara, D
- Publisher / Repository:
- IOP Publishing Ltd
- Date Published:
- Journal Name:
- Journal of Physics A: Mathematical and Theoretical
- Edition / Version:
- 1
- Volume:
- 58
- Issue:
- 3
- ISSN:
- 1751-8113
- Page Range / eLocation ID:
- 035401
- Format(s):
- Medium: X Size: 399KB Other: pdf
- Size(s):
- 399KB
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The standard model of particle physics accurately describes all particle physics measurements made so far in the laboratory. However, it is unable to answer many questions that arise from cosmological observations, such as the nature of dark matter and why matter dominates over antimatter throughout the Universe. Theories that contain particles and interactions beyond the standard model, such as models that incorporate supersymmetry, may explain these phenomena. Such particles appear in the vacuum and interact with common particles to modify their properties. For example, the existence of very massive particles whose interactions violate time-reversal symmetry, which could explain the cosmological matter–antimatter asymmetry, can give rise to an electric dipole moment along the spin axis of the electron. No electric dipole moments of fundamental particles have been observed. However, dipole moments only slightly smaller than the current experimental bounds have been predicted to arise from particles more massive than any known to exist. Here we present an improved experimental limit on the electric dipole moment of the electron, obtained by measuring the electron spin precession in a superposition of quantum states of electrons subjected to a huge intramolecular electric field. The sensitivity of our measurement is more than one order of magnitude better than any previous measurement. This result implies that a broad class of conjectured particles, if they exist and time-reversal symmetry is maximally violated, have masses that greatly exceed what can be measured directly at the Large Hadron Collider.more » « less
-
A<sc>bstract</sc> We study local, higher-spin conserved currents in integrable 2dsigma models that have been deformed via coupling to auxiliary fields. These currents generate integrability-preserving flows introduced by Smirnov and Zamolodchikov. For auxiliary field (AF) deformations of a free boson, we prove that local spin-ncurrents exist for allnand give recursion relations that characterize Smirnov-Zamolodchikov (SZ) flows driven by these currents. We then show how to construct spin-2ncurrents in a unified class of auxiliary field sigma models with common structure — including AF theories based on the principal chiral model (PCM), its non-Abelian T-dual, (bi-)Yang-Baxter deformations of the PCM, and symmetric space models — for interaction functions of one variable, and describe SZ flows driven by any function of the stress tensor in these cases. Finally, we give perturbative solutions for spin-3 SZ flows in any member of our unified class of AF models with underlying$$ \mathfrak{su} $$ (3) algebra. Part of our analysis shows that the class of AF deformations can be extended by allowing the interaction function to depend on a larger set of variables than has previously been considered.more » « less
-
Abstract Spin–orbit torques generated by a spin current are key to magnetic switching in spintronic applications. The polarization of the spin current dictates the direction of switching required for energy‐efficient devices. Conventionally, the polarizations of these spin currents are restricted to be along a certain direction due to the symmetry of the material allowing only for efficient in‐plane magnetic switching. Unconventional spin–orbit torques arising from novel spin current polarizations, however, have the potential to switch other magnetization orientations such as perpendicular magnetic anisotropy, which is desired for higher density spintronic‐based memory devices. Here, it is demonstrated that low crystalline symmetry is not required for unconventional spin–orbit torques and can be generated in a nonmagnetic high symmetry material, iridium dioxide (IrO2), using epitaxial design. It is shown that by reducing the relative crystalline symmetry with respect to the growth direction large unconventional spin currents can be generated and hence spin–orbit torques. Furthermore, the spin polarizations detected in (001), (110), and (111) oriented IrO2thin films are compared to show which crystal symmetries restrict unconventional spin transport. Understanding and tuning unconventional spin transport generation in high symmetry materials can provide a new route towards energy‐efficient magnetic switching in spintronic devices.more » « less
-
A<sc>bstract</sc> We introduce a tree-level chemical potential mechanism for spin-1 particles within cosmological collider physics, allowing them to be detected in primordial non-Gaussianities for masses above the inflationary Hubble scale. We apply this mechanism to orbifold grand unification and the massive unification partners of the standard model gauge bosons. Our mechanism requires at least a pair of massive vector fields which are singlets of the standard model, a condition which is satisfied in the classic “trinification” scenario. Assuming that the gauge hierarchy problem is solved by supersymmetry, gauge coupling running points to unification partners at ~ 1015GeV. We show that, within high-scale inflation, chemical potential enhancement can lead to observably strong signals for trinification partners in future cosmological surveys.more » « less
An official website of the United States government

