skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 7, 2026

Title: A universal feature for the Higgs phenomenon in Anti de Sitter space
Abstract In Anti de Sitter space both massive and massless high-spin particles can have consistent local interactions. Both can couple to conserved currents. In this paper we show that when the particles have spin one or greater, there exists a universal feature associated to the particle becoming massive: the currents possess a non-vanishing boundary flux.  more » « less
Award ID(s):
2210349
PAR ID:
10613037
Author(s) / Creator(s):
;
Corporate Creator(s):
Editor(s):
Henneaux, M; Nepomechie, R; Seminara, D
Publisher / Repository:
IOP Publishing Ltd
Date Published:
Journal Name:
Journal of Physics A: Mathematical and Theoretical
Edition / Version:
1
Volume:
58
Issue:
3
ISSN:
1751-8113
Page Range / eLocation ID:
035401
Format(s):
Medium: X Size: 399KB Other: pdf
Size(s):
399KB
Sponsoring Org:
National Science Foundation
More Like this
  1. A<sc>bstract</sc> The phenomenon of cosmological gravitational particle production (CGPP) is expected to occur during the period of inflation and the transition into a hot big bang cosmology. Particles may be produced even if they only couple directly to gravity, and so CGPP provides a natural explanation for the origin of dark matter. In this work we study the gravitational production of massive spin-2 particles assuming two different couplings to matter. We evaluate the full system of mode equations, including the helicity-0 modes, and by solving them numerically we calculate the spectrum and abundance of massive spin-2 particles that results from inflation on a hilltop potential. We conclude that CGPP might provide a viable mechanism for the generation of massive spin-2 particle dark matter during inflation, and we identify the favorable region of parameter space in terms of the spin-2 particle’s mass and the reheating temperature. As a secondary product of our work, we identify the conditions under which such theories admit ghost or gradient instabilities, and we thereby derive a generalization of the Higuchi bound to Friedmann-Robertson-Walker (FRW) spacetimes. 
    more » « less
  2. The standard model of particle physics accurately describes all particle physics measurements made so far in the laboratory. However, it is unable to answer many questions that arise from cosmological observations, such as the nature of dark matter and why matter dominates over antimatter throughout the Universe. Theories that contain particles and interactions beyond the standard model, such as models that incorporate supersymmetry, may explain these phenomena. Such particles appear in the vacuum and interact with common particles to modify their properties. For example, the existence of very massive particles whose interactions violate time-reversal symmetry, which could explain the cosmological matter–antimatter asymmetry, can give rise to an electric dipole moment along the spin axis of the electron. No electric dipole moments of fundamental particles have been observed. However, dipole moments only slightly smaller than the current experimental bounds have been predicted to arise from particles more massive than any known to exist. Here we present an improved experimental limit on the electric dipole moment of the electron, obtained by measuring the electron spin precession in a superposition of quantum states of electrons subjected to a huge intramolecular electric field. The sensitivity of our measurement is more than one order of magnitude better than any previous measurement. This result implies that a broad class of conjectured particles, if they exist and time-reversal symmetry is maximally violated, have masses that greatly exceed what can be measured directly at the Large Hadron Collider. 
    more » « less
  3. Abstract Spin–orbit torques generated by a spin current are key to magnetic switching in spintronic applications. The polarization of the spin current dictates the direction of switching required for energy‐efficient devices. Conventionally, the polarizations of these spin currents are restricted to be along a certain direction due to the symmetry of the material allowing only for efficient in‐plane magnetic switching. Unconventional spin–orbit torques arising from novel spin current polarizations, however, have the potential to switch other magnetization orientations such as perpendicular magnetic anisotropy, which is desired for higher density spintronic‐based memory devices. Here, it is demonstrated that low crystalline symmetry is not required for unconventional spin–orbit torques and can be generated in a nonmagnetic high symmetry material, iridium dioxide (IrO2), using epitaxial design. It is shown that by reducing the relative crystalline symmetry with respect to the growth direction large unconventional spin currents can be generated and hence spin–orbit torques. Furthermore, the spin polarizations detected in (001), (110), and (111) oriented IrO2thin films are compared to show which crystal symmetries restrict unconventional spin transport. Understanding and tuning unconventional spin transport generation in high symmetry materials can provide a new route towards energy‐efficient magnetic switching in spintronic devices. 
    more » « less
  4. A<sc>bstract</sc> We introduce a tree-level chemical potential mechanism for spin-1 particles within cosmological collider physics, allowing them to be detected in primordial non-Gaussianities for masses above the inflationary Hubble scale. We apply this mechanism to orbifold grand unification and the massive unification partners of the standard model gauge bosons. Our mechanism requires at least a pair of massive vector fields which are singlets of the standard model, a condition which is satisfied in the classic “trinification” scenario. Assuming that the gauge hierarchy problem is solved by supersymmetry, gauge coupling running points to unification partners at ~ 1015GeV. We show that, within high-scale inflation, chemical potential enhancement can lead to observably strong signals for trinification partners in future cosmological surveys. 
    more » « less
  5. Abstract Radical chemistries have attracted burgeoning attention due to their intriguing technological applications in organic electronics, optoelectronics, and magneto‐responsive systems. However, the potential of these magnetically active glassy polymers to transport spin‐selective currents has not been demonstrated. Here, the spin‐transport characteristics of the radical polymer poly(4‐glycidyloxy‐2,2,6,6‐tetramethylpiperidine‐1‐oxyl) (PTEO) allow for sustained spin‐selective currents when incorporated into typical device geometries with magnetically polarized electrodes. Annealing thin films of PTEO above its glass transition temperature results in a giant magnetoresistance effect (i.e., an MR of ≈80%) at 4 K. Additionally, ferromagnetic resonance spin‐pumping results in a relatively large effective spin‐mixing conductance of 1.18 × 1019m−2at the NiFe/PTEO interface. Due to the large spin‐density and radical‐radical exchange interactions, there is effective propagation of pure spin currents through PTEO in the NiFe/PTEO/Pd multilayer devices. This results in the transport of spin current over long distances with a spin diffusion length of 90.4 nm. The spin diffusion length and spin mixing conductance values surpass those reported in inorganic and metallic systems and are comparable to conventional doped conjugated polymers. This is the first example of spin transport in a nonconjugated radical polymer, and these findings underscore the promising spin‐transporting potential of radical polymers. 
    more » « less