STIRAP (stimulated Raman adiabatic passage) is a powerful laser-based method, usually involving two photons, for efficient and selective transfer of populations between quantum states. A particularly interesting feature is the fact that the coupling between the initial and the final quantum states is via an intermediate state, even though the lifetime of the latter can be much shorter than the interaction time with the laser radiation. Nevertheless, spontaneous emission from the intermediate state is prevented by quantum interference. Maintaining the coherence between the initial and final state throughout the transfer process is crucial. STIRAP was initially developed with applications in chemical dynamics in mind. That is why the original paper of 1990 was published in
Improved limit on the electric dipole moment of the electron
The standard model of particle physics accurately describes all particle physics measurements made so far in the laboratory. However, it is unable to answer many questions that arise from cosmological observations, such as the nature of dark matter and why matter dominates over antimatter throughout the Universe. Theories that contain particles and interactions beyond the standard model, such as models that incorporate supersymmetry, may explain these phenomena. Such particles appear in the vacuum and interact with common particles to modify their properties. For example, the existence of very massive particles whose interactions violate time-reversal symmetry, which could explain the cosmological matter–antimatter asymmetry, can give rise to an electric dipole moment along the spin axis of the electron. No electric dipole moments of fundamental particles have been observed. However, dipole moments only slightly smaller than the current experimental bounds have been predicted to arise from particles more massive than any known to exist. Here we present an improved experimental limit on the electric dipole moment of the electron, obtained by measuring the electron spin precession in a superposition of quantum states of electrons subjected to a huge intramolecular electric field. The sensitivity of our measurement is more than one order of more »
- Award ID(s):
- 1734011
- Publication Date:
- NSF-PAR ID:
- 10094514
- Journal Name:
- Nature
- Volume:
- 562
- Issue:
- 7727
- Page Range or eLocation-ID:
- 355 to 360
- ISSN:
- 0028-0836
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract The Journal of Chemical Physics . However, from about the year 2000, the unique capabilities of STIRAP and its robustness with respect to small variations in some experimental parameters stimulated many researchers to apply the scheme to a variety of other fields of physics. The successes of these efforts are documented in this collection of articles. In Part A the experimental success of STIRAP in manipulating or controlling molecules, photons, ions or even quantum systems in a solid-state environment is documented. After a brief introduction tomore » -
The best limit on the electron electric dipole moment (eEDM) comes from the ACME II experiment [Nature \textbf{562} (2018), 355-360] which probes physics beyond the Standard Model at energy scales well above 1 TeV. ACME II measured the eEDM by monitoring electron spin precession in a cold beam of the metastable H3Δ1 state of thorium monoxide (ThO) molecules, with an observation time τ≈1 ms for each molecule. We report here a new measurement of the lifetime of the ThO (H3Δ1) state, τH=4.2±0.5 ms. Using an apparatus within which τ≈τH will enable a substantial reduction in uncertainty of an eEDM measurement.
-
Because Fermi liquids are inherently non-interacting states of matter, all electronic levels below the chemical potential are doubly occupied. Consequently, the simplest way of breaking the Fermi-liquid theory is to engineer a model in which some of those states are singly occupied, keeping time-reversal invariance intact. We show that breaking an overlooked1 local-in-momentum space ℤ2 symmetry of a Fermi liquid does precisely this. As a result, although the Mott transition from a Fermi liquid is correctly believed to arise without breaking any continuous symmetry, a discrete symmetry is broken. This symmetry breaking serves as an organizing principle for Mott physics whether it arises from the tractable Hatsugai–Kohmoto model or the intractable Hubbard model. Through a renormalization-group analysis, we establish that both are controlled by the same fixed point. An experimental manifestation of this fixed point is the onset of particle–hole asymmetry, a widely observed2,3,4,5,6,7,8,9,10 phenomenon in strongly correlated systems. Theoretically, the singly occupied region of the spectrum gives rise to a surface of zeros of the single-particle Green function, denoted as the Luttinger surface. Using K-homology, we show that the Bott topological invariant guarantees the stability of this surface to local perturbations. Our proof demonstrates that the strongly coupled fixedmore »
-
Abstract Molecules with unstable isotopes often contain heavy and deformed nuclei and thus possess a high sensitivity to parity-violating effects, such as the Schiff moments. Currently the best limits on Schiff moments are set with diamagnetic atoms. Polar molecules with quantum-enhanced sensing capabilities, however, can offer better sensitivity. In this work, we consider the prototypical 223 Fr 107 Ag molecule, as the octupole deformation of the unstable 223 Fr francium nucleus amplifies the nuclear Schiff moment of the molecule by two orders of magnitude relative to that of spherical nuclei and as the silver atom has a large electron affinity. To develop a competitive experimental platform based on molecular quantum systems, 223 Fr atoms and 107 Ag atoms have to be brought together at ultracold temperatures. That is, we explore the prospects of forming 223 Fr 107 Ag from laser-cooled Fr and Ag atoms. We have performed fully relativistic electronic-structure calculations of ground and excited states of FrAg that account for the strong spin-dependent relativistic effects of Fr and the strong ionic bond to Ag. In addition, we predict the nearest-neighbor densities of magnetic-field Feshbach resonances in ultracold 223 Fr + 107 Ag collisions with coupled-channel calculations. These resonances canmore »
-
Abstract The standard model of particle physics 1–4 describes the known fundamental particles and forces that make up our Universe, with the exception of gravity. One of the central features of the standard model is a field that permeates all of space and interacts with fundamental particles 5–9 . The quantum excitation of this field, known as the Higgs field, manifests itself as the Higgs boson, the only fundamental particle with no spin. In 2012, a particle with properties consistent with the Higgs boson of the standard model was observed by the ATLAS and CMS experiments at the Large Hadron Collider at CERN 10,11 . Since then, more than 30 times as many Higgs bosons have been recorded by the ATLAS experiment, enabling much more precise measurements and new tests of the theory. Here, on the basis of this larger dataset, we combine an unprecedented number of production and decay processes of the Higgs boson to scrutinize its interactions with elementary particles. Interactions with gluons, photons, and W and Z bosons—the carriers of the strong, electromagnetic and weak forces—are studied in detail. Interactions with three third-generation matter particles (bottom ( b ) and top ( t ) quarks, and tau leptons ( τmore »