skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: HighNESS conceptual design report: Volume II. The NNBAR experiment.
A key aim of the HighNESS project for the European Spallation Source is to enable cutting-edge particle physics experiments. This volume presents a conceptual design report for the NNBAR experiment. NNBAR would exploit a new cold lower moderator to make the first search in over thirty years for free neutrons converting to anti-neutrons. The observation of such a baryon-number-violating signature would be of fundamental significance and tackle open questions in modern physics, including the origin of the matter-antimatter asymmetry. This report shows the design of the beamline, supermirror focusing system, magnetic and radiation shielding, and anti-neutron detector necessary for the experiment. A range of simulation programs are employed to quantify the performance of the experiment and show how background can be suppressed. For a search with full background suppression, a sensitivity improvement of three orders of magnitude is expected, as compared with the previous search. Civil engineering studies for the NNBAR beamline are also shown, as is a costing model for the experiment.  more » « less
Award ID(s):
2209481 2209590
PAR ID:
10613187
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
IOS Press
Date Published:
Journal Name:
Journal of Neutron Research
Volume:
25
Issue:
3-4
ISSN:
1023-8166
Page Range / eLocation ID:
315 to 406
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The NNBAR experiment for the European Spallation Source will search for free neutrons converting to antineutrons with a sensitivity improvement of three orders of magnitude compared to the last such search. This paper describes progress towards a conceptual design report for NNBAR. The design of a moderator, neutron reflector, beamline, shielding and annihilation detector is reported. The simulations used form part of a model which will be used for optimisation of the experiment design and quantification of its sensitivity. 
    more » « less
  2. Abstract The European spallation source (ESS) will be the world’s brightest neutron source and will open a new intensity frontier in particle physics. The HIBEAM collaboration aims to exploit the unique potential of the ESS with a dedicated ESS instrument for particle physics which offers world-leading capability in a number of areas. The HIBEAM program includes the first search in thirty years for free neutrons converting to antineutrons and searches for sterile neutrons, ultralight axion dark matter and nonzero neutron electric charge. This paper outlines the capabilities, design, infrastructure, and scientific potential of the HIBEAM program, including its dedicated beamline, neutron optical system, magnetic shielding and control, and detectors for neutrons and antineutrons. Additionally, we discuss the long-term scientific exploitation of HIBEAM, which may include measurements of the neutron electric dipole moment and precision studies of neutron decays. 
    more » « less
  3. Abstract The futureRicochetexperiment aims at searching for new physics in the electroweak sector by providing a high precision measurement of the Coherent Elastic Neutrino-Nucleus Scattering (CENNS) process down to the sub-100 eV nuclear recoil energy range. The experiment will deploy a kg-scale low-energy-threshold detector array combining Ge and Zn target crystals 8.8 m away from the 58 MW research nuclear reactor core of the Institut Laue Langevin (ILL) in Grenoble, France. Currently, theRicochetCollaboration is characterizing the backgrounds at its future experimental site in order to optimize the experiment’s shielding design. The most threatening background component, which cannot be actively rejected by particle identification, consists of keV-scale neutron-induced nuclear recoils. These initial fast neutrons are generated by the reactor core and surrounding experiments (reactogenics), and by the cosmic rays producing primary neutrons and muon-induced neutrons in the surrounding materials. In this paper, we present theRicochetneutron background characterization using$$^3$$ 3 He proportional counters which exhibit a high sensitivity to thermal, epithermal and fast neutrons. We compare these measurements to theRicochetGeant4 simulations to validate our reactogenic and cosmogenic neutron background estimations. Eventually, we present our estimated neutron background for the futureRicochetexperiment and the resulting CENNS detection significance. Our results show that depending on the effectiveness of the muon veto, we expect a total nuclear recoil background rate between 44 ± 3 and 9 ± 2 events/day/kg in the CENNS region of interest, i.e. between 50 eV and 1 keV. We therefore found that theRicochetexperiment should reach a statistical significance of 4.6 to 13.6 $$\sigma $$ σ for the detection of CENNS after one reactor cycle, when only the limiting neutron background is considered. 
    more » « less
  4. High-intensity neutron beams, such as those available at the European Spallation Source (ESS), provide new opportunities for fundamental discoveries. Here, we discuss a novel Ramsey neutron-beam experiment to search for ultralight axion dark matter through its coupling to neutron spins, which would cause the neutron spins to rotate about the velocity of the neutrons relative to the dark matter halo. We estimate that experiments at the HIBEAM beamline with a 50 m free flight path at the ESS can improve the sensitivity to the axion-neutron coupling compared to the current best laboratory limits by up to 2–3 orders of magnitude over the axion mass range 10 22 eV 10 16 eV . Published by the American Physical Society2024 
    more » « less
  5. Abstract The search for a dark photon holds considerable interest in the physics community. Such a force carrier would begin to illuminate the dark sector. Many experiments have searched for such a particle, but so far it has proven elusive. In recent years the concept of a low mass dark photon has gained popularity in the physics community. Of particular recent interest is the 8 Be and 4 He anomaly, which could be explained by a new fifth force carrier with a mass of 17 MeV/ c 2 . The proposed Darklight experiment would search for this potential low mass force carrier at ARIEL in the 10-20 MeV/ c 2 e + e − invariant mass range. This proceeding will focus on the experimental design and physics case of the Darklight experiment. 
    more » « less