The Cryogenic Underground Observatory for Rare Events (CUORE) is the first cryogenic experiment searching for
The future
- Authors:
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publication Date:
- NSF-PAR ID:
- 10391286
- Journal Name:
- The European Physical Journal C
- Volume:
- 83
- Issue:
- 1
- ISSN:
- 1434-6052
- Publisher:
- Springer Science + Business Media
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract decay that has been able to reach the one-tonne mass scale. The detector, located at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy, consists of an array of 988$$0\nu \beta \beta $$ crystals arranged in a compact cylindrical structure of 19 towers. CUORE began its first physics data run in 2017 at a base temperature of about 10 mK and in April 2021 released its$${\mathrm{TeO}}_{2}$$ result of the search for$$3{\mathrm{rd}}$$ , corresponding to a tonne-year of$$0\nu \beta \beta $$ exposure. This is the largest amount of data ever acquired with a solid state detector and the most sensitive measurement of$$\mathrm{TeO}_{2}$$ decay in$$0\nu \beta \beta $$ ever conducted . We present the current status of CUORE search for$${}^{130}\mathrm{Te}$$ with the updated statistics of one tonne-yr. We finally give an update of the CUORE background model and the measurement of the$$0\nu \beta \beta $$ $${}^{130}\mathrm{Te}$$ decay half-life and decay to excited states of$$2\nu \beta \beta $$ , studies performed using an exposure of 300.7 kg yr.$${}^{130}\mathrm{Xe}$$ -
Abstract We present the first unquenched lattice-QCD calculation of the form factors for the decay
at nonzero recoil. Our analysis includes 15 MILC ensembles with$$B\rightarrow D^*\ell \nu $$ flavors of asqtad sea quarks, with a strange quark mass close to its physical mass. The lattice spacings range from$$N_f=2+1$$ fm down to 0.045 fm, while the ratio between the light- and the strange-quark masses ranges from 0.05 to 0.4. The valence$$a\approx 0.15$$ b andc quarks are treated using the Wilson-clover action with the Fermilab interpretation, whereas the light sector employs asqtad staggered fermions. We extrapolate our results to the physical point in the continuum limit using rooted staggered heavy-light meson chiral perturbation theory. Then we apply a model-independent parametrization to extend the form factors to the full kinematic range. With this parametrization we perform a joint lattice-QCD/experiment fit using several experimental datasets to determine the CKM matrix element . We obtain$$|V_{cb}|$$ . The first error is theoretical, the second comes from experiment and the last one includes electromagnetic and electroweak uncertainties, with an overall$$\left| V_{cb}\right| = (38.40 \pm 0.68_{\text {th}} \pm 0.34_{\text {exp}} \pm 0.18_{\text {EM}})\times 10^{-3}$$ , which illustrates the tensions between the experimental data sets, and between theory and experiment. This result is inmore »$$\chi ^2\text {/dof} = 126/84$$ -
Abstract The selection of low-radioactive construction materials is of utmost importance for the success of low-energy rare event search experiments. Besides radioactive contaminants in the bulk, the emanation of radioactive radon atoms from material surfaces attains increasing relevance in the effort to further reduce the background of such experiments. In this work, we present the
Rn emanation measurements performed for the XENON1T dark matter experiment. Together with the bulk impurity screening campaign, the results enabled us to select the radio-purest construction materials, targeting a$$^{222}$$ Rn activity concentration of$$^{222}$$ in$$10\,\mathrm{\,}\upmu \mathrm{Bq}/\mathrm{kg}$$ of xenon. The knowledge of the distribution of the$$3.2\,\mathrm{t}$$ Rn sources allowed us to selectively eliminate problematic components in the course of the experiment. The predictions from the emanation measurements were compared to data of the$$^{222}$$ Rn activity concentration in XENON1T. The final$$^{222}$$ Rn activity concentration of$$^{222}$$ in the target of XENON1T is the lowest ever achieved in a xenon dark matter experiment.$$(4.5\pm 0.1)\,\mathrm{\,}\upmu \mathrm{Bq}/\mathrm{kg}$$ -
Abstract Ultra-pure NaI(Tl) crystals are the key element for a model-independent verification of the long standing DAMA result and a powerful means to search for the annual modulation signature of dark matter interactions. The SABRE collaboration has been developing cutting-edge techniques for the reduction of intrinsic backgrounds over several years. In this paper we report the first characterization of a 3.4 kg crystal, named NaI-33, performed in an underground passive shielding setup at LNGS. NaI-33 has a record low
K contamination of 4.3 ± 0.2 ppb as determined by mass spectrometry. We measured a light yield of 11.1 ± 0.2 photoelectrons/keV and an energy resolution of 13.2% (FWHM/E) at 59.5 keV. We evaluated the activities of$$^{39}$$ Ra and$$^{226}$$ Th inside the crystal to be$$^{228}$$ Bq/kg and$$5.9\pm 0.6~\upmu $$ Bq/kg, respectively, which would indicate a contamination from$$1.6\pm 0.3~\upmu $$ U and$$^{238}$$ Th at part-per-trillion level. We measured an activity of 0.51 ± 0.02 mBq/kg due to$$^{232}$$ Pb out of equilibrium and a$$^{210}$$ quenching factor of 0.63 ± 0.01 at 5304 keV. We illustrate the analyses techniques developed to reject electronic noise in the lower part of the energy spectrum. A cut-based strategy and a multivariate approach indicated a rate, attributed to the intrinsic radioactivity of the crystal, of$$\alpha $$ 1 count/day/kg/keV in the [5–20] keV region.$$\sim $$ -
Abstract We report the identification of metastable isomeric states of
Ac at 6.28 keV, 6.67 keV and 20.19 keV, with lifetimes of an order of 100 ns. These states are produced by the$$^{228}$$ -decay of$$\beta $$ Ra, a component of the$$^{228}$$ Th decay chain, with$$^{232}$$ Q-values of 39.52 keV, 39.13 keV and 25.61 keV, respectively. Due to the low Q-value of$$\beta $$ Ra as well as the relative abundance of$$^{228}$$ Th and their progeny in low background experiments, these observations potentially impact the low-energy background modeling of dark matter search experiments.$$^{232}$$