skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 4, 2026

Title: Two closed systems for long-term propagation of the marine tunicate Botryllus schlosseri isolated from natural seawater
Advanced methodologies forBotryllus schlosseriartificial seawater systems are needed to decrease dependency of large-scale culture on natural seawater and expand use of this important new model organism to more inland laboratories. We constructed two botryllid tunicate customized closed aquaculture systems, a static system consisting of lightly aerated jars fed with commercial filter feeder diet, and a recirculating aquaculture system (RAS) consisting of standard marine RAS components fed live microalgae and zooplankton diets. Initially, static tunicate culture yielded exponential growth in contrast to the RAS system, which yielded poor survival and negligible growth. Modifications were made to the RAS system to improve water treatment proficiency that greatly improved tunicate survival and growth. Experiments were performed isolating feed and water type as variables that differed between the static and RAS systems to evaluate their effects. A live feed combination achieved five-fold greater growth relative to a commercial concentrate diet.B. schlosserimaintained in optimized RAS water achieved two-fold faster growth relative to animals maintained with freshly prepared artificial seawater indicating that the RAS water was beneficial to the animals. Feeding frequency of the RAS system was increased from three times per week to daily. The RAS system and procedural modifications resulted in comparable growth rates in the static and RAS systems. Both optimized systems are suitable for long-term propagation and sustenance of botryllid tunicate populations supporting both sexual and asexual modes of reproduction with a current residence time of over 24 months.  more » « less
Award ID(s):
2127516
PAR ID:
10613215
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
bioRxiv
Date Published:
Format(s):
Medium: X
Institution:
bioRxiv
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Life cycle assessment (LCA), a tool used to assess the environmental impacts of products and processes, has been used to evaluate a range of aquaculture systems. Eighteen LCA studies were reviewed which included assess- ments of recirculating aquaculture systems (RAS), flow-through systems, net cages, and pond systems. This re- view considered the potential to mitigate environmental burdens with a movement from extensive to intensive aquaculture systems. Due to the diversity in study results, specific processes (feed, energy, and infrastructure) and specific impact categories (land use, water use, and eutrophication potential) were analyzed in-depth. The comparative analysis indicated there was a possible shift from local to global impacts with a progression from extensive to intensive systems, if mitigation strategies were not performed. The shift was partially due to increased electricity requirements but also varied with electricity source. The impacts from infrastructure were less than 13 % of the environmental impact and considered negligible. For feed, the environmental impacts were typically more dependent on feed conversion ratio (FCR) than the type of system. Feed also contributed to over 50 % of the impacts on land use, second only to energy carriers. The analysis of water use indicated intensive recirculating systems efficiently reduce water use as compared to extensive systems; however, at present, studies have only considered direct water use and future work is required that incorporates indirect and consumptive water use. Alternative aquaculture systems that can improve the total nutrient uptake and production yield per material and energy based input, thereby reducing the overall emissions per unit of feed, should be further investigated to optimize the overall of aquaculture systems, considering both global and local environmental impacts. While LCA can be a valuable tool to evaluate trade-offs in system designs, the results are often location and species specific. Therefore, it is critical to consider both of these criteria in conjunction with LCA results when developing aquaculture systems. 
    more » « less
  2. Abstract This study establishes the copper tolerance range of the colonial marine tunicateBotryllus schlosseri. Furthermore, quantitative organismal phenotyping and quantitative proteomics were combined to characterize theB. schlosseriresponse to, and recovery from, acute copper exposure stress. Changes in the area ofB. schlossericolony systems and pigmentation provided sensitive, dose-dependent markers of exposure to, and recovery from, copper stress. Comprehensive quantitative proteomics using consistent data-independent acquisition (DIA) assay libraries revealed activation of detoxification, oxidative stress, and immune pathways during exposure to copper stress. In addition, quantitative proteomics uncovered enrichment of tissue remodeling and proliferative signaling pathways during recovery from copper stress. We identified 35 proteins whose expression closely mirrored phenotypic changes observed at the colonial system level. This specific proteome signature represents a comprehensive molecular underpinning of the organismal response ofB. schlosserito copper stress. In conclusion, this study establishes copper tolerance ranges of the invasive colonial tunicateB. schlosseriand explains the molecular underpinnings of stress-induced organismal phenotypes by identifying corresponding proteome signatures and their associated functional enrichments. Moreover, identification of copper concentrations that are stressful and highly disruptive on the molecular phenotype, yet readily recoverable from, lays a critical foundation for future studies directed at stress-induced adaptation and evolutionary trajectories of marine invertebrates in changing and novel environments. 
    more » « less
  3. Abstract The colonial tunicateBotryllus schlosseriregenerates weekly through a cyclical process in which adult zooids are replaced by a new generation of buds. While this dynamic asexual development is a hallmark of the species, its molecular regulation remains poorly understood. This study presents the first comprehensive proteomic analysis ofB. schlosseriblastogenesis at the individual zooid level, using data-independent acquisition mass spectrometry to quantify protein abundance across developmental stages. The results reveal extensive proteome remodeling between proliferating buds and degenerating zooids. Co-expression analysis identified stage-specific protein modules enriched for biosynthesis and cell cycle pathways in buds, and for apoptosis, catabolism, and metabolic remodeling in zooids. A focused comparison between takeover buds and takeover zooids uncovered distinct regulatory programs controlling proliferation and senescence. Key proteins, including CDK1, CDK2, HDAC2, and PCNA, were identified as candidate regulators of cell cycle progression. These findings provide a molecular framework for understanding regeneration in a basal chordate and offer protein targets that may enable cell cycle re-entry and long-term culture of tunicate primary cells. Summary StatementThis study maps proteome dynamics during the blastogenic cycle inBotryllus schlosseri, identifying candidate proteins that regulate cell proliferation and offer targets for tunicate cell line development. 
    more » « less
  4. Abstract One of the primary sustainability challenges in aquaculture is replacing fish meal with plant‐based ingredients in aquafeeds. Plants are not optimal due to low protein content and antinutritional factors which can cause gut dysbiosis. Duckweed (Lemnaceae) is a family of aquatic plants with high protein content and has been used successfully for various types of animal feeds. In this systematic review and meta‐analysis of 58 papers, we summarize the extent by which duckweed has been used in fish production including the species of fish tested, the grow‐out stage of fish, and method of application. Duckweed studies spanned a total of 18 species of fish (16 freshwater and two marine) that collectively are valued at 263 billion USD annually, and comprise 28% of total aquaculture production by mass. The average experiment length was 72 days (SD 42), primarily at the fingerling life stage. Duckweed was fed to the fish through live grazing, dried, and pelleted forms with 20% inclusion as the most common formulation. TheLemnaspp., dominated byL.minor,L.gibba, and unknownLemnaspecies, were the most commonly used for feeds.Spirodela polyrhizawas the second most common. Duckweed inclusion levels between 15% and 30% were associated with positive outcomes on fish growth and feed conversion ratio without any negative impact on survival rates. Most duckweed species, especially fromWollfiellahave not been tested as a fish feed but should be explored whereas most studies focused on freshwater fishes rather than marine. 
    more » « less
  5. The channel catfish (Ictalurus punctatus) farming industry is the largest and one of the oldest aquaculture industries in the United States. Despite being an established industry, production issues stemming from disease outbreaks remain problematic for producers. Supplementing fish diets with probiotics to enhance the immune system and growth potential is one approach to mitigating disease. Although considerable laboratory data demonstrate efficacy, these results do not always translate to natural modes of disease transmission. Hence, the present work was conducted in the laboratory but incorporated flow-through water from large catfish pond production systems, allowing for natural exposure to pathogens. Two feeding trials were conducted in an 18-tank aquaria system housing two different sizes, 34.8 ± 12.5 g and 0.36 ± 0.03 g, of channel catfish. Channel catfish in the first trial were fed three experimental diets over six weeks. Commercial diets were top-coated with two selected spore-forming Bacillus spp. probiotics, Bacillus velezensis AP193 (1 × 106 CFU g−1) and BiOWiSH (3.6 × 104 CFU g−1), or a basal diet that contained no dietary additive. In the second eight-week trial, diets were top-coated with BiOWiSH at three concentrations (1.8, 3.6, and 7.3 × 104 CFU g−1), along with one basal diet (no probiotic). At the completion of these studies, growth performance, survival, hematocrit, blood chemistry, and immune expression of interleukin 1β (il1β), tumor necrosis factor-alpha (tnf-α), interleukin-8 (il8), transforming-growth factor β1 (tgf-β1), and toll-like receptor 9 (tlr9) were evaluated using qPCR. Trial results revealed no differences (p > 0.05) among treatments concerning growth, survival, or hematological parameters. For immune gene expression, interesting trends were discerned, with substantial downregulation observed in B. velezensis AP193-fed fish for il1β, tnf-α, and tlr9 expression within splenic tissue, compared to that of the basal and BiOWiSH diets (p < 0.05). However, the results were not statistically significant for anterior kidney tissue in the first trial. In the second trial, varied levels of probiotic inclusion revealed no significant impact of BiOWiSH’s products on the expression of il1β, tnf-α, il8, and tgf-β1 in both spleen and kidney tissue at any rate of probiotic inclusion (p > 0.05). Based on these findings, more research on utilizing probiotics in flow-through systems with natural infection conditions is crucial to ensure consistency from a controlled laboratory scale to real-world practices. 
    more » « less