skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bipartite Network Analysis for Understanding Makerspace Tool Usage Patterns
Makerspaces continue to be a part of many university engineering programs. More work is needed to understand their impacts and how makerspaces should be implemented to maximize their impact for all students. Many of the available approaches to ascertain impact are highly effective but excessively time-intensive, especially for continuous monitoring of a space. This paper presents the use of bipartite network analysis of weighted and unweighted matrices of student tool usage to determine modularity as an easy-to obtain metric to monitor space. To obtain the data needed, an end-of-the-semester survey asks students which tool they used in the space and how frequently. Data was collected in Spring 2021 and Spring 2022 as covid restrictions were being lifted, providing a data set where the modularity values should be changing. Prior work demonstrated unweighted modularity values as an effective tool for identifying changes in the health of a makerspace. Current work explores the inclusion of tool frequency use on the conclusion drawn from modularity analysis. Results show differing patterns of results between the weighted (includes frequency of use) and unweighted (only considers if a tool was used) modularity values. More work needs to explore the use of weighted bipartite network analysis and the benefits it may provide over the much simpler to obtain the unweighted analysis. Additional research is also needed on other methods to monitor the health of a makerspace and the benefits to all of its users.  more » « less
Award ID(s):
2013547
PAR ID:
10613224
Author(s) / Creator(s):
; ;
Publisher / Repository:
8th International Symposium on Academic Makerspaces (ISAM)
Date Published:
Issue:
26
Format(s):
Medium: X
Location:
Sheffield, UK
Sponsoring Org:
National Science Foundation
More Like this
  1. Makerspaces continue to be a part of many university engineering programs. More work is needed to understand their impacts and how makerspaces should be implemented to maximize their impact for all students. Many of the available approaches to ascertain impact are highly effective but excessively time-intensive, especially for continuous monitoring of a space. This paper presents the use of bipartite network analysis of weighted and unweighted matrices of student tool usage to determine modularity as an easy-to-obtain metric to monitor space. To obtain the data needed, an end-of-the-semester survey asks students which tool they used in the space and how frequently. Data was collected in Spring 2021 and Spring 2022 as covid restrictions were being lifted, providing a data set where the modularity values should be changing. Prior work demonstrated unweighted modularity values as an effective tool for identifying changes in the health of a makerspace. Current work explores the inclusion of tool frequency use on the conclusion drawn from modularity analysis. Results show differing patterns of results between the weighted (includes frequency of use) and unweighted (only considers if a tool was used) modularity values. More work needs to explore the use of weighted bipartite network analysis and the benefits it may provide over the much simpler to obtain the unweighted analysis. Additional research is also needed on other methods to monitor the health of a makerspace and the benefits to all of its users. 
    more » « less
  2. Academic makerspaces have continued to rise in popularity as research shows the diverse benefits they provide to students. More and more engineering curriculums are incorporating makerspaces and as such there is a need to better understand how their student users can best be served. Surveys administered to makerspace users at a public research university in the Southwest United States during Fall 2020, Spring 2021, Spring 2022, and Fall 2022 tracked student tool usage trends with academic career stages. The survey asked questions about prior experience, motivation, tool usage, and demographics. Analyzed results for mechanical engineering student users provide insight into how curriculum and class year affect the specific tools used and the percentage of students who used a particular tool. The survey results also create a bipartite network model of students and tools, mimicking plant-pollinator type mutualistic networks in ecology. The bipartite network models the student interactions with the tools and visualizes how students interact with the tools. This network modeling enables ecological network analysis techniques to identify key makerspace actors quantitatively. Ecological modularity, for example, identifies divisions in the student-tool makerspace network that highlight how students from different majors (here we investigate mechanical) utilize the makerspace's tools. Modularity is also able to identify “hub” tools in the space, defined as tools central to a student's interaction within the space, based on student-tool connectivity data. The analysis finds that tools commonly used for class by mechanical engineering students, such as the 3D printer or laser cutter, act as gateway tools that bring users into the space and help spark interest in the space's other tools. Using the combined insights from the survey results and the network analysis, ecological network metrics are shown here to be a promising route for informing makerspace policy, tool purchases, and curriculum development. The results can help ensure that the space is set up to give students the best learning opportunities. 
    more » « less
  3. Makerspaces provide unparalleled hands-on experiences for students. Understanding the interactions that occur in these spaces is critical to improving engineering education. This work represents the first time that demographic-based modularity analysis has been conducted on university makerspaces. While largely dependent on the survey data used to make the bipartite networks, the results serve as an example of how this technique could offer a novel means of viewing these makerspaces. At the broadest level, this approach provides insight into the ways in which different subsets of students use the space, both in terms of raw usage statistics and in terms of the module assignments for both student and tool groupings. When looking at the network from a major perspective, the desired change in modularity is less apparent, and more work will need to be done to see whether increasing the modularity helps with system resilience (maintaining high levels of makerspace operation despite failures of certain tools) or if higher modularity represents an undesirable separation in the space between different majors and the tools they tend to use. 
    more » « less
  4. Abstract As the popularity of makerspaces and maker culture has skyrocketed over the past two decades, numerous studies have been conducted to investigate the benefits of makerspaces for university students and how to best establish an inclusive, welcoming environment in these spaces on college campuses. However, unprecedented disruptions, such as the COVID-19 pandemic, have the potential to greatly affect the way that students interact with makerspaces and the benefits that result. In this study, a survey asking about prior makerspace involvement, tool usage, and student demographics was administered to students who use academic makerspaces at two large public universities. Survey data was collected for three semesters (Fall 2020, Spring 2021, and Spring 2022) and spanned both during and after the height of the COVID-19 pandemic. To quantify the differences between the semesters, nestedness and connectance metrics inspired by ecological plant-pollinator networks were utilized. These ecological metrics allow for the structure of the interactions of a network to be measured, with nestedness highlighting how students interact with tools and connectance with the quantity of student-to-tool interaction. The network analysis was used to better gauge the health of the makerspace and the type and frequency of interactions between tools. The raw survey data combined with the ecological metrics provided unique insight into the struggles the makerspaces encountered throughout the pandemic. It was found that nestedness, a measure of system stability, decreases with a decrease in tool usage. Additionally, the higher the connectance the more students interacted with the space. Utilizing metrics such as these and better understanding student tool interactions can aid makerspaces in monitoring their success and maintaining a healthy and welcoming space, as well as tracking the current health of the space. In combination with the survey results, a deep understanding of what challenges the space is facing can be captured. 
    more » « less
  5. Globally, universities have heavily invested in makerspaces. This investment requires an understanding of how students use tools and how tools to aid in engineering education, as well as how the spaces can be improved. Network analysis of human systems can often yield valuable information about how the networks work and function. Applying network techniques to makerspaces can yield helpful information that is otherwise not visible. This thesis’s primary focus is the application of a variety of bio-inspired network techniques to improve the understanding of the makerspace. Several parallels can be drawn between makerspace networks and other mutualistic networks, such as plant-and-pollinator networks where the system’s success depends on the interaction between the two species. The ecological metrics would establish measurable values that the health and conditions of a network can be evaluated using. These three metrics are nestedness, modularity, and connectance, which can provide structural information about the network and act as diagnostics tools that can change depending on different system conditions. The makerspace at the universities went through several regulatory changes due to COVID-19, providing a unique opportunity to utilize the metrics to analyze the health of the space under higher regulatory restrictions and return to normal operations. The makerspace is converted into a bipartite network to allow for ecological analysis techniques where the spaces are modeled with students interacting with tools. Null models evaluate the significance of the nestedness and modularity results. Findings indicate that makerspaces tend to be structurally nested, but when compared to normal operating conditions, they can be seen to exhibit modularity during the higher restriction environment. The makerspace network and subsequent analysis provide insight into the use of ecological metrics in human systems and provide potential ideas for results to be used in various networks. The following network analysis also yields valuable information identifying essential hub tools and student interactions within the space, showcasing the capabilities the ecological study of human networks can have on human systems. 
    more » « less