skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Makerspace Network Analysis for Identifying Student Demographic Usage
Makerspaces provide unparalleled hands-on experiences for students. Understanding the interactions that occur in these spaces is critical to improving engineering education. This work represents the first time that demographic-based modularity analysis has been conducted on university makerspaces. While largely dependent on the survey data used to make the bipartite networks, the results serve as an example of how this technique could offer a novel means of viewing these makerspaces. At the broadest level, this approach provides insight into the ways in which different subsets of students use the space, both in terms of raw usage statistics and in terms of the module assignments for both student and tool groupings. When looking at the network from a major perspective, the desired change in modularity is less apparent, and more work will need to be done to see whether increasing the modularity helps with system resilience (maintaining high levels of makerspace operation despite failures of certain tools) or if higher modularity represents an undesirable separation in the space between different majors and the tools they tend to use.  more » « less
Award ID(s):
2013547
PAR ID:
10412258
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
2022 International Symposium on Academic Makerspaces (ISAM)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Globally, universities have heavily invested in makerspaces. Purposeful investment however requires an understanding of how students use tools and how tools aid in engineering education. This paper utilizes a modularity analysis in combination with student surveys to analyze and understand the space as a network of student-tool interactions. The results show that a modularity analysis is able to identify the roles of different tool groupings in the space by measuring how well tool groups are connected within their own “module” and their connection to tools outside of their module. A highly connected tool in both categories is considered a hub that is critical to the network. Poorly connected tools indicate insignificance or under utilization. Makerspaces at two universities were investigated: School A with a full-time staff running the makerspace and School B run by student-volunteers. The results show that 3D printers and metal tools are hubs at School A and 3D printers, metal tools, and laser cutters are hubs at School B. School B was also found to have a higher overall interaction with all the tools in the space. The modularity analysis results are validated using two-semesters worth of student self-reported survey data. The results support the use of a modularity analysis as a way to analyze and visualize the complex network interactions occurring within a makerspace, which can support the improvement of current makerspaces and development of future makerspaces. 
    more » « less
  2. Globally, universities have heavily invested in makerspaces. Purposeful investment however requires an understanding of how students use tools and how tools aid in engineering education. This paper utilizes a modularity analysis in combination with student surveys to analyze and understand the space as a network of student-tool interactions. The results show that a modularity analysis is able to identify the roles of different tool groupings in the space by measuring how well tool groups are connected within their own “module” and their connection to tools outside of their module. A highly connected tool in both categories is considered a hub that is critical to the network. Poorly connected tools indicate insignificance or under utilization. Makerspaces at two universities were investigated: School A with a full-time staff running the makerspace and School B run by student-volunteers. The results show that 3D printers and metal tools are hubs at School A and 3D printers, metal tools, and laser cutters are hubs at School B. School B was also found to have a higher overall interaction with all the tools in the space. The modularity analysis results are validated using two-semesters worth of student self-reported survey data. The results support the use of a modularity analysis as a way to analyze and visualize the complex network interactions occurring within a makerspace, which can support the improvement of current makerspaces and development of future makerspaces. 
    more » « less
  3. Globally, universities have heavily invested in makerspaces. This investment requires an understanding of how students use tools and how tools to aid in engineering education, as well as how the spaces can be improved. Network analysis of human systems can often yield valuable information about how the networks work and function. Applying network techniques to makerspaces can yield helpful information that is otherwise not visible. This thesis’s primary focus is the application of a variety of bio-inspired network techniques to improve the understanding of the makerspace. Several parallels can be drawn between makerspace networks and other mutualistic networks, such as plant-and-pollinator networks where the system’s success depends on the interaction between the two species. The ecological metrics would establish measurable values that the health and conditions of a network can be evaluated using. These three metrics are nestedness, modularity, and connectance, which can provide structural information about the network and act as diagnostics tools that can change depending on different system conditions. The makerspace at the universities went through several regulatory changes due to COVID-19, providing a unique opportunity to utilize the metrics to analyze the health of the space under higher regulatory restrictions and return to normal operations. The makerspace is converted into a bipartite network to allow for ecological analysis techniques where the spaces are modeled with students interacting with tools. Null models evaluate the significance of the nestedness and modularity results. Findings indicate that makerspaces tend to be structurally nested, but when compared to normal operating conditions, they can be seen to exhibit modularity during the higher restriction environment. The makerspace network and subsequent analysis provide insight into the use of ecological metrics in human systems and provide potential ideas for results to be used in various networks. The following network analysis also yields valuable information identifying essential hub tools and student interactions within the space, showcasing the capabilities the ecological study of human networks can have on human systems. 
    more » « less
  4. Clifford Whitcomb (Ed.)
    Analyzing interactions between actors from a systems perspective yields valuable information about the overall system's form and function. When this is coupled with ecological modeling and analysis techniques, biological inspiration can also be applied to these systems. The diagnostic value of three metrics frequently used to study mutualistic biological ecosystems (nestedness, modularity, and connectance) is shown here using academic engineering makerspaces. Engineering students get hands‐on usage experience with tools for personal, class, and competition‐based projects in these spaces. COVID‐19 provides a unique study of university makerspaces, enabling the analysis of makerspace health through the known disturbance and resultant regulatory changes (implementation and return to normal operations). Nestedness, modularity, and connectance are shown to provide information on space functioning in a way that enables them to serve as heuristic diagnostics tools for system conditions. The makerspaces at two large R1 universities are analyzed across multiple semesters by modeling them as bipartite student‐tool interaction networks. The results visualize the predictive ability of these metrics, finding that the makerspaces tended to be structurally nested in any one semester, however when compared to a “normal” semester the restrictions are reflected via a higher modularity. The makerspace network case studies provide insight into the use and value of quantitative ecosystem structure and function indicators for monitoring similar human‐engineered interaction networks that are normally only tracked qualitatively. 
    more » « less
  5. Makerspaces continue to be a part of many university engineering programs. More work is needed to understand their impacts and how makerspaces should be implemented to maximize their impact for all students. Many of the available approaches to ascertain impact are highly effective but excessively time-intensive, especially for continuous monitoring of a space. This paper presents the use of bipartite network analysis of weighted and unweighted matrices of student tool usage to determine modularity as an easy-to obtain metric to monitor space. To obtain the data needed, an end-of-the-semester survey asks students which tool they used in the space and how frequently. Data was collected in Spring 2021 and Spring 2022 as covid restrictions were being lifted, providing a data set where the modularity values should be changing. Prior work demonstrated unweighted modularity values as an effective tool for identifying changes in the health of a makerspace. Current work explores the inclusion of tool frequency use on the conclusion drawn from modularity analysis. Results show differing patterns of results between the weighted (includes frequency of use) and unweighted (only considers if a tool was used) modularity values. More work needs to explore the use of weighted bipartite network analysis and the benefits it may provide over the much simpler to obtain the unweighted analysis. Additional research is also needed on other methods to monitor the health of a makerspace and the benefits to all of its users. 
    more » « less