skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on August 17, 2026

Title: How to Make Any Computational Secret Sharing Scheme Adaptively Secure
Secret sharing (SS) is a foundational cryptographic primitive with diverse applications, including secure multiparty computation and conditional disclosure of secrets. While traditional schemes have primarily emphasized information-theoretic security, recent advancements have increasingly leveraged computational assumptions to achieve more efficient constructions and support broader access policies. Despite these successes, most existing computational secret sharing (CSS) schemes are limited to a static security model, where adversaries must commit to their choice of corrupted participants at the outset. A critical challenge in CSS lies in achieving adaptive security, where adversaries can dynamically select participants to corrupt, better reflecting real-world threat models. In this paper, we present a novel transformation that converts any statically secure CSS scheme into an adaptively secure one while preserving the original access policy and computational assumptions, providing a framework for bridging the gap between static and adaptive security. Our construction introduces a multiplicative share size overhead of where is the number of parties. Additionally, we explore trade-offs in efficiency and security, offering more efficient adaptive CSS constructions for specific, restricted policy classes. This work addresses key limitations in the current landscape of CSS and paves the way for broader adoption of adaptively secure secret sharing in cryptographic applications.  more » « less
Award ID(s):
2318701
PAR ID:
10613271
Author(s) / Creator(s):
;
Publisher / Repository:
CRYPTO 2025
Date Published:
Format(s):
Medium: X
Location:
Santa Barbara, CA, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. The main goal of traceable cryptography is to protect against unauthorized redistribution of cryptographic functionalities. Such schemes provide a way to embed identities (i.e., a “mark”) within cryptographic objects (e.g., decryption keys in an encryption scheme, signing keys in a signature scheme). In turn, the tracing guarantee ensures that any “pirate device” that successfully replicates the underlying functionality can be successfully traced to the set of identities used to build the device. In this work, we study traceable pseudorandom functions (PRFs). As PRFs are the workhorses of symmetric cryptography, traceable PRFs are useful for augmenting symmetric cryptographic primitives with strong traceable security guarantees. However, existing constructions of traceable PRFs either rely on strong notions like indistinguishability obfuscation or satisfy weak security guarantees like single-key security (i.e., tracing only works against adversaries that possess a single marked key). In this work, we show how to use fingerprinting codes to upgrade a single-key traceable PRF into a fully collusion resistant traceable PRF, where security holds regardless of how many keys the adversary possesses. We additionally introduce a stronger notion of security where tracing security holds even against active adversaries that have oracle access to the tracing algorithm. In conjunction with known constructions of single-key traceable PRFs, we obtain the first fully collusion resistant traceable PRF from standard lattice assumptions. Our traceable PRFs directly imply new lattice-based secret-key traitor tracing schemes that are CCA-secure and where tracing security holds against active adversaries that have access to the tracing oracle. 
    more » « less
  2. Dachman-Soled, Dana (Ed.)
    Adaptive security is a highly desirable property in the design of secure protocols. It tolerates adversaries that corrupt parties as the protocol proceeds, as opposed to static security where the adversary corrupts the parties at the onset of the execution. The well-accepted folklore is that static and adaptive securities are equivalent for perfectly secure protocols. Indeed, this folklore is backed up with a transformation by Canetti et al. (EUROCRYPT'01), showing that any perfectly secure protocol that is statically secure and satisfies some basic requirements is also adaptively secure. Yet, the transformation results in an adaptively secure protocol with inefficient simulation (i.e., where the simulator might run in super-polynomial time even if the adversary runs just in polynomial time). Inefficient simulation is problematic when using the protocol as a sub-routine in the computational setting. Our main question is whether an alternative efficient transformation from static to adaptive security exists. We show an inherent difficulty in achieving this goal generically. In contrast to the folklore, we present a protocol that is perfectly secure with efficient static simulation (therefore also adaptively secure with inefficient simulation), but for which efficient adaptive simulation does not exist (assuming the existence of one-way permutations). In addition, we prove that the seminal protocol of Ben-Or, Goldwasser and Wigderson (STOC'88) is secure against adaptive, semi-honest corruptions with efficient simulation. Previously, adaptive security of the protocol, as is, was only known either for a restricted class of circuits, or for all circuits but with inefficient simulation. 
    more » « less
  3. One of the primary research challenges in Attribute-Based Encryption (ABE) is constructing and proving cryptosystems that are adaptively secure. To date the main paradigm for achieving adaptive security in ABE is dual system encryption. However, almost all such solutions in bilinear groups rely on (variants of) either the subgroup decision problem over composite order groups or the decision linear assumption. Both of these assumptions are decisional rather than search assumptions and the target of the assumption is a source or bilinear group element. This is in contrast to earlier selectively secure ABE systems which can be proven secure from either the decisional or search Bilinear Diffie-Hellman assumption. In this work we make progress on closing this gap by giving a new ABE construction for the subset functionality and prove security under the Search Bilinear Diffie-Hellman assumption. We first provide a framework for proving adaptive security in Attribute-Based Encryption systems. We introduce a concept of ABE with deletable attributes where any party can take a ciphertext encrypted under the attribute string and modify it into a ciphertext encrypted under any string where is derived by replacing any bits of with symbols (i.e. ``deleting" attributes of ). The semantics of the system are that any private key for a circuit can be used to decrypt a ciphertext associated with if none of the input bits read by circuit are symbols and . We show a pathway for combining ABE with deletable attributes with constrained psuedorandom functions to obtain adaptively secure ABE building upon the recent work of Tsabary. Our new ABE system will be adaptively secure and be a ciphertext-policy ABE that supports the same functionality as the underlying constrained PRF as long as the PRF is ``deletion conforming". Here we also provide a simple constrained PRF construction that gives subset functionality. Our approach enables us to access a broader array of Attribute-Based Encryption schemes support deletion of attributes. For example, we show that both the Goyal~et al.~(GPSW) and Boyen ABE schemes can trivially handle a deletion operation. And, by using a hardcore bit variant of GPSW scheme we obtain an adaptively secure ABE scheme under the Search Bilinear Diffie-Hellman assumption in addition to pseudo random functions in NC1. This gives the first adaptively secure ABE from a search assumption as all prior work relied on decision assumptions over source group elements. 
    more » « less
  4. Attribute-based encryption (ABE) is an advanced cryptographic tool and useful to build various types of access control systems. Toward the goal of making ABE more practical, we propose key-policy (KP) and ciphertext-policy (CP) ABE schemes, which first support unbounded sizes of attribute sets and policies with negation and multi-use of attributes, allow fast decryption, and are adaptively secure under a standard assumption, simultaneously. Our schemes are more expressive than previous schemes and efficient enough. To achieve the adaptive security along with the other properties, we refine the technique introduced by Kowalczyk and Wee (Eurocrypt’19) so that we can apply the technique more expressive ABE schemes. Furthermore, we also present a new proof technique that allows us to remove redundant elements used in their ABE schemes. We implement our schemes in 128-bit security level and present their benchmarks for an ordinary personal computer and smartphones. They show that all algorithms run in one second with the personal computer when they handle any policy or attribute set with one hundred attributes. [Note: this paper is not by the PI, but by Genise who was supported by the grant; support was acknowledged in this publication.] 
    more » « less
  5. Unclonable cryptography utilizes the principles of quantum mechanics to addresses cryptographic tasks that are impossible classically. We introduce a novel unclonable primitive in the context of secret sharing, called unclonable secret sharing (USS). In a USS scheme, there are n shareholders, each holding a share of a classical secret represented as a quantum state. They can recover the secret once all parties (or at least t parties) come together with their shares. Importantly, it should be infeasible to copy their own shares and send the copies to two non-communicating parties, enabling both of them to recover the secret. Our work initiates a formal investigation into the realm of unclonable secret sharing, shedding light on its implications, constructions, and inherent limitations. Connections: We explore the connections between USS and other quantum cryptographic primitives such as unclonable encryption and position verification, showing the difficulties to achieve USS in different scenarios. Limited Entanglement: In the case where the adversarial shareholders do not share any entanglement or limited entanglement, we demonstrate information-theoretic constructions for USS. Large Entanglement: If we allow the adversarial shareholders to have unbounded entanglement resources (and unbounded computation), we prove that unclonable secret sharing is impossible. On the other hand, in the quantum random oracle model where the adversary can only make a bounded polynomial number of queries, we show a construction secure even with unbounded entanglement. Furthermore, even when these adversaries possess only a polynomial amount of entanglement resources, we establish that any unclonable secret sharing scheme with a reconstruction function implementable using Cliffords and logarithmically many T-gates is also unattainable. 
    more » « less