skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 1, 2026

Title: Submodular Functions and Perfect Graphs
We give a combinatorial polynomial-time algorithm to find a maximum weight independent set in perfect graphs of bounded degree that do not contain a prism or a hole of length four as an induced subgraph. An even pair in a graph is a pair of vertices all induced paths between which are even. An even set is a set of vertices every two of which are an even pair. We show that every perfect graph that does not contain a prism or a hole of length four as an induced subgraph has a balanced separator which is the union of a bounded number of even sets, where the bound depends only on the maximum degree of the graph. This allows us to solve the maximum weight independent set problem using the well-known submodular function minimization algorithm. Funding: This work was supported by the Engineering and Physical Sciences Research Council [Grant EP/V002813/1]; the National Science Foundation [Grants DMS-1763817, DMS-2120644, and DMS-2303251]; and Alexander von Humboldt-Stiftung.  more » « less
Award ID(s):
2120644
PAR ID:
10613279
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
INFORMS Institute for Operations Research and the Management Sciences
Date Published:
Journal Name:
Mathematics of Operations Research
Volume:
50
Issue:
1
ISSN:
0364-765X
Page Range / eLocation ID:
189 to 208
Subject(s) / Keyword(s):
submodular functions perfect graphs and maximum weight independent set
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Beyersdorff, Olaf; Kanté, Mamadou Moustapha; Kupferman, Orna; Lokshtanov, Daniel (Ed.)
    We revisit the recent polynomial-time algorithm for the Max Weight Independent Set (MWIS) problem in bounded-degree graphs that do not contain a fixed graph whose every component is a subdivided claw as an induced subgraph [Abrishami, Chudnovsky, Dibek, Rzążewski, SODA 2022]. First, we show that with an arguably simpler approach we can obtain a faster algorithm with running time n^{𝒪(Δ²)}, where n is the number of vertices of the instance and Δ is the maximum degree. Then we combine our technique with known results concerning tree decompositions and provide a polynomial-time algorithm for MWIS in graphs excluding a fixed graph whose every component is a subdivided claw as an induced subgraph, and a fixed biclique as a subgraph. 
    more » « less
  2. In the Maximum Independent Set problem we are asked to find a set of pairwise nonadjacent vertices in a given graph with the maximum possible cardinality. In general graphs, this classical problem is known to be NP-hard and hard to approximate within a factor of n1−ε for any ε > 0. Due to this, investigating the complexity of Maximum Independent Set in various graph classes in hope of finding better tractability results is an active research direction. In H-free graphs, that is, graphs not containing a fixed graph H as an induced subgraph, the problem is known to remain NP-hard and APX-hard whenever H contains a cycle, a vertex of degree at least four, or two vertices of degree at least three in one connected component. For the remaining cases, where every component of H is a path or a subdivided claw, the complexity of Maximum Independent Set remains widely open, with only a handful of polynomial-time solvability results for small graphs H such as P5, P6, the claw, or the fork. We prove that for every such “possibly tractable” graph H there exists an algorithm that, given an H-free graph G and an accuracy parameter ε > 0, finds an independent set in G of cardinality within a factor of (1 – ε) of the optimum in time exponential in a polynomial of log | V(G) | and ε−1. That is, we show that for every graph H for which Maximum Independent Set is not known to be APX-hard in H-free graphs, the problem admits a quasi-polynomial time approximation scheme in this graph class. Our algorithm works also in the more general weighted setting, where the input graph is supplied with a weight function on vertices and we are maximizing the total weight of an independent set. 
    more » « less
  3. A hole in a graph $$G$$ is an induced cycle of length at least four, and an even hole is a hole of even length. The diamond is the graph obtained from the complete graph $$K_4$$ by removing an edge. A pyramid is a graph consisting of a vertex $$a$$ called the apex and a triangle $$\{b_1, b_2, b_3\}$$ called the base, and three paths $$P_i$$ from $$a$$ to $$b_i$$ for $$1 \leq i \leq 3$$, all of length at least one, such that for $$i \neq j$$, the only edge between $$P_i \setminus \{a\}$$ and $$P_j \setminus \{a\}$$ is $$b_ib_j$$, and at most one of $$P_1$$, $$P_2$$, and $$P_3$$ has length exactly one. For a family $$\mathcal{H}$$ of graphs, we say a graph $$G$$ is $$\mathcal{H}$$-free if no induced subgraph of $$G$$ is isomorphic to a member of $$\mathcal{H}$$. Cameron, da Silva, Huang, and Vušković proved that (even hole, triangle)-free graphs have treewidth at most five, which motivates studying the treewidth of even-hole-free graphs of larger clique number. Sintiari and Trotignon provided a construction of (even hole, pyramid, $$K_4$$)-free graphs of arbitrarily large treewidth. Here, we show that for every $$t$$, (even hole, pyramid, diamond, $$K_t$$)-free graphs have bounded treewidth. The graphs constructed by Sintiari and Trotignon contain diamonds, so our result is sharp in the sense that it is false if we do not exclude diamonds. Our main result is in fact more general, that treewidth is bounded in graphs excluding certain wheels and three-path-configurations, diamonds, and a fixed complete graph. The proof uses “non-crossing decompositions” methods similar to those in previous papers in this series. In previous papers, however, bounded degree was a necessary condition to prove bounded treewidth. The result of this paper is the first to use the method of “non-crossing decompositions” to prove bounded treewidth in a graph class of unbounded maximum degree. 
    more » « less
  4. Let G be a Berge graph that has no odd prism and no antihole of length at least six as an induced subgraph. We show that every such graph G with no balanced skew-partition is either complete or has an even pair. 
    more » « less
  5. We prove that the tree independence number of every even-hole-free graph is at most polylogarithmic in its number of vertices. More explicitly, we prove that there exists a constant c > 0 such that for every integer n > 1 every n-vertex even-hole-free graph has a tree decomposition where each bag has stability (independence) number at most clog10 n. This implies that the Maximum Weight Independent Set problem, as well as several other natural algorithmic problems that are known to be NP-hard in general, can be solved in quasipolynomial time if the input graph is even-hole-free. The quasi-polynomial complexity will remain the same even if the exponent of the logarithm is reduced to 1 (which would be asymptotically best possible). 
    more » « less