skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 18, 2026

Title: A chromosome-level genome assembly of the varied leaved jewelflower, Streptanthus diversifolius, reveals a recent whole genome duplication
Abstract The Streptanthoid complex, a clade of primarily Streptanthus and Caulanthus species in the Thelypodieae (Brassicaceae) is an emerging model system for ecological and evolutionary studies. This complex spans the full range of the California Floristic Province including desert, foothill, and mountain environments. The ability of these related species to radiate into dramatically different environments makes them a desirable study subject for exploring how plant species expand their ranges and adapt to new environments over time. Ecological and evolutionary studies for this complex have revealed fascinating variation in serpentine soil adaptation, defense compounds, germination, flowering, and life history strategies. Until now a lack of publicly available genome assemblies has hindered the ability to relate these phenotypic observations to their underlying genetic and molecular mechanisms. To help remedy this situation, we present here a chromosome-level genome assembly and annotation of Streptanthus diversifolius, a member of the Streptanthoid Complex, developed using Illumina, Hi-C, and HiFi sequencing technologies. Construction of this assembly also provides further evidence to support the previously reported recent whole genome duplication unique to the Thelypodieae. This whole genome duplication may have provided individuals in the Streptanthoid Complex the genetic arsenal to rapidly radiate throughout the California Floristic Province and to occupy commonly inhospitable environments including serpentine soils.  more » « less
Award ID(s):
1831913
PAR ID:
10613348
Author(s) / Creator(s):
; ; ; ; ; ; ;
Editor(s):
Mathews, S
Publisher / Repository:
G3
Date Published:
Journal Name:
G3: Genes, Genomes, Genetics
Volume:
15
Issue:
4
ISSN:
2160-1836
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Schemske, D (Ed.)
    We used nuclear genomic data and statistical models to evaluate the ecological and evolutionary processes shaping spatial variation in species richness inCalochortus(Liliaceae, 74 spp.).Calochortusoccupies diverse habitats in the western United States and Mexico and has a center of diversity in the California Floristic Province, marked by multiple orogenies, winter rainfall, and highly divergent climates and substrates (including serpentine). We used sequences of 294 low-copy nuclear loci to produce a time-calibrated phylogeny, estimate historical biogeography, and test hypotheses regarding drivers of present-day spatial patterns in species number. Speciation and species coexistence require reproductive isolation and ecological divergence, so we examined the roles of chromosome number, environmental heterogeneity, and migration in shaping local species richness. Six major clades—inhabiting different geographic/climatic areas, and often marked by different base chromosome numbers (n = 6 to 10)—began diverging from each other ~10.3 Mya. As predicted, local species number increased significantly with local heterogeneity in chromosome number, elevation, soil characteristics, and serpentine presence. Species richness is greatest in the Transverse/Peninsular Ranges where clades with different chromosome numbers overlap, topographic complexity provides diverse conditions over short distances, and several physiographic provinces meet allowing immigration by several clades. Recently diverged sister-species pairs generally have peri-patric distributions, and maximum geographic overlap between species increases over the first million years since divergence, suggesting that chromosomal evolution, genetic divergence leading to gametic isolation or hybrid inviability/sterility, and/or ecological divergence over small spatial scales may permit species co-occurrence. 
    more » « less
  2. Sethuraman, Arun (Ed.)
    Abstract Damselflies and dragonflies (Order: Odonata) play important roles in both aquatic and terrestrial food webs and can serve as sentinels of ecosystem health and predictors of population trends in other taxa. The habitat requirements and limited dispersal of lotic damselflies make them especially sensitive to habitat loss and fragmentation. As such, landscape genomic studies of these taxa can help focus conservation efforts on watersheds with high levels of genetic diversity, local adaptation, and even cryptic endemism. Here, as part of the California Conservation Genomics Project (CCGP), we report the first reference genome for the American rubyspot damselfly, Hetaerina americana, a species associated with springs, streams and rivers throughout California. Following the CCGP assembly pipeline, we produced two de novo genome assemblies. The primary assembly includes 1,630,044,487 base pairs, with a contig N50 of 5.4 Mb, a scaffold N50 of 86.2 Mb, and a BUSCO completeness score of 97.6%. This is the seventh Odonata genome to be made publicly available and the first for the subfamily Hetaerininae. This reference genome fills an important phylogenetic gap in our understanding of Odonata genome evolution, and provides a genomic resource for a host of interesting ecological, evolutionary, and conservation questions for which the rubyspot damselfly genus Hetaerina is an important model system. 
    more » « less
  3. Abstract Acarospora socialis, the bright cobblestone lichen, is commonly found in southwestern North America. This charismatic yellow lichen is a species of key ecological significance as it is often a pioneer species in new environments. Despite their ecological importance virtually no research has been conducted on the genomics of A. socialis. To address this, we used long-read sequencing to generate the first high-quality draft genome of A. socialis. Lichen thallus tissue was collected from Pinkham Canyon in Joshua Tree National Park, California and deposited in the UC Riverside herbarium under accession #295874. The de novo assembly of the mycobiont partner of the lichen was generated from Pacific Biosciences HiFi long reads and Dovetail Omni-C chromatin capture data. After removing algal and bacterial contigs, the fungal genome was approximately 31.2 Mb consisting of 38 scaffolds with contig and scaffold N50 of 2.4 Mb. The BUSCO completeness score of the assembled genome was 97.5% using the Ascomycota gene set. Information on the genome of A. socialis is important for California conservation purposes given that this lichen is threatened in some places locally by wildfires due to climate change. This reference genome will be used for understanding the genetic diversity, population genomics, and comparative genomics of A. socialis species. Genomic resources for this species will support population and landscape genomics investigations, exploring the use of A. socialis as a bioindicator species for climate change, and in studies of adaptation by comparing populations that occur across aridity gradients in California. 
    more » « less
  4. Bulgarelli, Davide (Ed.)
    ABSTRACT The composition of microbial communities found in association with plants is influenced by host phenotype and genotype. However, the ways in which specific genetic architectures of host plants shape microbiomes are unknown. Genome duplication events are common in the evolutionary history of plants and influence many important plant traits, and thus, they may affect associated microbial communities. Using experimentally induced whole-genome duplication (WGD), we tested the effect of WGD on rhizosphere bacterial communities in Arabidopsis thaliana . We performed 16S rRNA amplicon sequencing to characterize differences between microbiomes associated with specific host genetic backgrounds (Columbia versus Landsberg) and ploidy levels (diploid versus tetraploid). We modeled relative abundances of bacterial taxa using a hierarchical Bayesian approach. We found that host genetic background and ploidy level affected rhizosphere community composition. We then tested to what extent microbiomes derived from a specific genetic background or ploidy level affected plant performance by inoculating sterile seedlings with microbial communities harvested from a prior generation. We found a negative effect of the tetraploid Columbia microbiome on growth of all four plant genetic backgrounds. These findings suggest an interplay between host genetic background and ploidy level and bacterial community assembly with potential ramifications for host fitness. Given the prevalence of ploidy-level variation in both wild and managed plant populations, the effects on microbiomes of this aspect of host genetic architecture could be a widespread driver of differences in plant microbiomes. IMPORTANCE Plants influence the composition of their associated microbial communities, yet the underlying host-associated genetic determinants are typically unknown. Genome duplication events are common in the evolutionary history of plants and affect many plant traits. Using Arabidopsis thaliana , we characterized how whole-genome duplication affected the composition of rhizosphere bacterial communities and how bacterial communities associated with two host plant genetic backgrounds and ploidy levels affected subsequent plant growth. We observed an interaction between ploidy level and genetic background that affected both bacterial community composition and function. This research reveals how genome duplication, a widespread genetic feature of both wild and crop plant species, influences bacterial assemblages and affects plant growth. 
    more » « less
  5. Ingvarsson, P (Ed.)
    Abstract The genus Acacia is a large group of woody legumes containing an enormous amount of morphological diversity in leaf shape. This diversity is at least in part the result of an innovation in leaf development where many Acacia species are capable of developing leaves of both bifacial and unifacial morphologies. While not unique in the plant kingdom, unifaciality is most commonly associated with monocots, and its developmental genetic mechanisms have yet to be explored beyond this group. In this study, we identify an accession of Acacia crassicarpa with high regeneration rates and isolate a clone for genome sequencing. We generate a chromosome-level assembly of this readily transformable clone, and using comparative analyses, confirm a whole-genome duplication unique to Caesalpinoid legumes. This resource will be important for future work examining genome evolution in legumes and the unique developmental genetic mechanisms underlying unifacial morphogenesis in Acacia. 
    more » « less