skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 1, 2026

Title: Near-surface winds at the southern Laurentide ice margin through the last deglaciation
Terrestrial proxies of wind direction spanning the last deglaciation suggest easterly winds were present near the Laurentide Ice Sheet margin in the North American midcontinent. However, the existence and spatial extent of such easterly winds have not been investigated with transient paleoclimate model simulations, which could provide improved dynamical context for interpreting the causes of these winds. Here we assess near-surface winds near the retreating southern Laurentide Ice Sheet margin using iTRACE, a transient simulation of deglacial climate from 20–11 ka. Near the south-central margin, simulated near-surface winds are northeasterly to easterly through the deglaciation, due to katabatic flow off the ice sheet and anticyclonic circulation. As the ice sheet retreats and the Laurentide High moves northeastward and weakens, near-surface northeasterly winds weaken. Meltwater fluxes also influence temperature and sea level pressure over the North Atlantic, leading to easterly wind anomalies over eastern to midwestern North America. The agreement between proxy and model wind directions is promising, although simulated easterly to northeasterly winds extend too far south in iTRACE relative to the proxy data. Agreement is also strongest in winter, spring, and fall, suggesting these may have been seasons with greater aeolian activity.  more » « less
Award ID(s):
2202919
PAR ID:
10613525
Author(s) / Creator(s):
; ;
Publisher / Repository:
Quaternary Research
Date Published:
Journal Name:
Quaternary Research
Volume:
125
ISSN:
0033-5894
Page Range / eLocation ID:
87 to 103
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract During the last ice age, the western United States was covered by large lakes, sustained partly by higher levels of precipitation. Increased rainfall was driven by the atmospheric circulation associated with the presence of large North American ice sheets, yet Pleistocene lakes generally reached their highstands not at glacial maximum but during deglaciation. Prior modeling studies, however, showed nearly monotonic drying since the last glacial maximum. Here I show that iTraCE, a new transient climate simulation of the last deglaciation, reproduces a robust peak in winter rainfall over the Great Basin near 16 ka. The simulated peak is driven by a transient strengthening and southward shift of the midlatitude jet. While meltwater forcing is an important driver of changes to the North Pacific Jet, changing orbital conditions and rising atmospheric CO2also shift the jet south and contribute to wetter conditions over the western US during deglaciation. 
    more » « less
  2. Abstract Changes in ice‐sheet size impact atmospheric circulation, a phenomenon documented by models but constrained by few paleoclimate records. We present sub‐centennial‐scale records of summer temperature and summer precipitation hydrogen isotope ratios (δ2H) spanning 12–7 ka from a lake on Baffin Island. In a transient model simulation, winds in this region were controlled by the relative strength of the high‐pressure systems and associated anticyclonic circulation over the retreating Greenland and Laurentide ice sheets. The correlation between summer temperature and precipitation δ2H proxy records changed from negative to positive at 9.8 ka. This correlation structure indicates a shift from alternating local and remote moisture, governed by the two ice‐sheet high‐pressure systems, to only remote moisture after 9.8 ka, governed by the strong Greenland high‐pressure system after the Laurentide Ice Sheet retreated. Such rapid atmospheric circulation changes may also occur in response to future, gradual ice‐sheet retreat. 
    more » « less
  3. Changes in ice-sheet size impact atmospheric circulation, a phenomenon documented by models but constrained by few paleoclimate records. We present sub-centennial-scale records of summer temperature and summer precipitation hydrogen isotope ratios (δ2H) spanning 12–7 kiloannum (ka) from a lake on Baffin Island. In a transient model simulation, winds in this region were controlled by the relative strength of the high-pressure systems and associated anticyclonic circulation over the retreating Greenland and Laurentide ice sheets. The correlation between summer temperature and precipitation δ2H proxy records changed from negative to positive at 9.8 ka. This correlation structure indicates a shift from alternating local and remote moisture, governed by the two ice-sheet high-pressure systems, to only remote moisture after 9.8 ka, governed by the strong Greenland high-pressure system after the Laurentide Ice Sheet retreated. Such rapid atmospheric circulation changes may also occur in response to future, gradual ice-sheet retreat. 
    more » « less
  4. During the last deglaciation, collapse of the saddle between the North American Cordilleran and Laurentide ice sheets led to rapid ice-sheet mass loss and separation, with meltwater discharge contributing to deglacial sea level rise. We directly date ice-sheet separation at the end of the saddle collapse using 64 10Be exposure ages along an ~1200-km transect of the ice-sheet suture zone. Collapse began in the south by 15.4 ± 0.4 ka and ended by 13.8 ± 0.1 ka at ~56◦N. Ice-sheet model simulations consistent with the 10Be ages find that the saddle collapse contributed 6.2–7.2 m to global mean sea-level rise from ~15.5 ka to ~14.0 ka, or approximately one third of global mean sea-level rise over this period. We determine 3.1–3.6 m of the saddle collapse meltwater was released during Meltwater Pulse 1A ~14.6-14.3 ka, constituting 20–40% of this meltwater pulse’s volume. Because the separation of the Cordilleran and Laurentide ice sheets occurred over 1–2 millennia, the associated release of meltwater during the saddle collapse supplied a smaller contribution to the magnitude of Meltwater Pulse 1A than has been recently proposed. 
    more » « less
  5. Accurate reconstruction of Laurentide Ice Sheet volume changes following the Last Glacial Maximum is critical for understanding ice sheet contribution to sea-level rise, the resulting influence of meltwater on oceanic circulation, and the spatial and temporal patterns of deglaciation. Here, we provide empirical constraints on Laurentide Ice Sheet thinning during the last deglaciation by measuring in situ cosmogenic 10Be in 81 samples collected along vertical transects of nine mountains in the northeastern United States. In conjunction with 107 exposure age samples over five vertical transects from previous studies, we reconstruct ice sheet thinning history. At peripheral sites (within 200 km of the terminal moraine), we find evidence for ∼600 m of thinning between 19.5 ka and 17.5 ka, which is coincident with the slow initial margin retreat indicated by varve records. At locations >400 km north of the terminal moraine, exposure ages above and below 1200 m a.s.l. exhibit different patterns. Ages above this elevation are variable and older, while lower elevation ages are indistinguishable over 800−1000 m elevation ranges, a pattern that suggests a subglacial thermal boundary at ∼1200 m a.s.l. separating erosive, warm-based ice below and polythermal, minimally erosive ice above. Low-elevation ages from up-ice mountains are between 15 ka and 13 ka, which suggests rapid thinning of ∼1000 m coincident with Bølling-Allerød warming. These rates of rapid paleo-ice thinning are comparable to those of other vertical exposure age transects around the world and may have been faster than modern basin-wide thinning rates in Antarctica and Greenland, which suggests that the southeastern Laurentide Ice Sheet was highly sensitive to a warming climate. 
    more » « less