skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 1, 2026

Title: Storm Peak Laboratory: A Research and Training Facility for the Atmospheric Sciences
Storm Peak Laboratory, located on the Steamboat Springs Ski Resort in Colorado on the west summit of Mount Werner at 10 532 ft (3220 m) MSL, is an internationally recognized high-elevation atmospheric research station that has been in use for over 40 years. This article provides a brief history of the Storm Peak Laboratory and the major research themes it has supported and discusses opportunities to leverage mountain observatory measurements to advance our understanding of the atmospheric processes. This facility provides long-term measurements of meteorology, clouds, aerosols, snow hydrology, and atmospheric gases, and it serves as a “proving ground” for instrument development and testing. Storm Peak Laboratory is part of multiple national and international observational networks. Due to the unique capabilities of Storm Peak Laboratory, there is a long history of targeted field campaigns primarily within the following research areas: mixed-phase cloud microphysics; atmospheric chemistry pertaining to the formation, characterization, and hygroscopicity of aerosols; and the transport and transformation of atmospheric mercury. Research training has been central to the mission of Storm Peak Laboratory (SPL) over the last 40 years. Currently, SPL hosts both undergraduate- and graduate-level courses in atmospheric science and snow hydrology organized by numerous institutions. Examples of these unique research training opportunities are provided.  more » « less
Award ID(s):
2113201
PAR ID:
10613608
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Bulletin of the American Meteorological Society
Date Published:
Journal Name:
Bulletin of the American Meteorological Society
Volume:
106
Issue:
6
ISSN:
0003-0007
Page Range / eLocation ID:
E1130 to E1148
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. New particle formation (NPF) events are defined as asudden burst of aerosols followed by growth and can impact climate bygrowing to larger sizes and under proper conditions, potentially formingcloud condensation nuclei (CCN). Field measurements relating NPF and CCN arecrucial in expanding regional understanding of how aerosols impactclimate. To quantify the possible impact of NPF on CCN formation, it isimportant to not only maintain consistency when classifying NPF events butalso consider the proper timeframe for particle growth to CCN-relevantsizes. Here, we analyze 15 years of direct measurements of both aerosol sizedistributions and CCN concentrations and combine them with novel methods toquantify the impact of NPF on CCN formation at Storm Peak Laboratory (SPL),a remote, mountaintop observatory in Colorado. Using the new automaticmethod to classify NPF, we find that NPF occurs on 50 % of all daysconsidered in the study from 2006 to 2021, demonstrating consistency withprevious work at SPL. NPF significantly enhances CCN during the winter by afactor of 1.36 and during the spring by a factor of 1.54, which, when combined withprevious work at SPL, suggests the enhancement of CCN by NPF occurs on aregional scale. We confirm that events with persistent growth are common inthe spring and winter, while burst events are more common in the summer andfall. A visual validation of the automatic method was performed in thestudy. For the first time, results clearly demonstrate the significantimpact of NPF on CCN in montane North American regions and the potential forwidespread impact of NPF on CCN. 
    more » « less
  2. Abstract The Chemistry in the Arctic: Clouds, Halogens, and Aerosols (CHACHA) field project aimed to advance the understanding of coupled meteorological and chemical processes in the atmospheric boundary layer during the seasonal increase in sea ice fracturing in spring. CHACHA sought to understand the interactions between this changing snow-covered surface, surface-coupled clouds, sea spray aerosols, multiphase halogen chemistry, and impacts of emissions from oil and gas extraction on atmospheric chemistry. The project measured greenhouse gases, reactive gases, size-resolved aerosol number concentrations, cloud microphysical properties, and meteorological conditions in real time, while also collecting particles for offline analysis. Two instrumented aircraft were deployed: the Purdue University Airborne Laboratory for Atmospheric Research and the University of Wyoming King Air. Flights were conducted out of Utqiaġvik, Alaska, between 21 February and 16 April 2022, sampling air over snow-covered and newly frozen sea ice in the Beaufort and Chukchi Seas, over open leads, and over the snow-covered tundra of the North Slope of Alaska, including the oil and gas extraction region near Prudhoe Bay. Observations showed that reactive bromine gases generally peaked near the snow-covered surface and decayed rapidly within the lowest few hundred meters where ozone was depleted, with concentrations reduced by nitrogen oxides emitted from oil fields. Cloud microphysical measurements revealed that thin clouds over and downwind of leads grew in vertical extent after contact with open water. Results from dropsondes indicated that convective boundary layers developed over leads, with depths ranging from 250 to 850 m depending on the fetch. 
    more » « less
  3. Abstract The 2085 km2Jordan River Basin, and its seven sub‐catchments draining the Central Wasatch Range immediately east of Salt Lake City, UT, are home to an array of hydrologic, atmospheric, climatic and chemical research infrastructure that collectively forms the Wasatch Environmental Observatory (WEO). WEO is geographically nested within a wildland to urban land‐use gradient and built upon a strong foundation of over a century of discharge and climate records. A 2200 m gradient in elevation results in variable precipitation, temperature and vegetation patterns. Soil and subsurface structure reflect systematic variation in geology from granitic, intrusive to mixed sedimentary clastic across headwater catchments, all draining to the alluvial or colluvial sediments of the former Lake Bonneville. Winter snowfall and spring snowmelt control annual hydroclimate, rapid population growth dominates geographic change in lower elevations and urban gas and particle emissions contribute to episodes of severe air pollution in this closed‐basin. Long‐term hydroclimate observations across this diverse landscape provide the foundation for an expanding network of infrastructure in both montane and urban landscapes. Current infrastructure supports both basic and applied research in atmospheric chemistry, biogeochemistry, climate, ecology, hydrology, meteorology, resource management and urban redesign that is augmented through strong partnerships with cooperating agencies. These features allow WEO to serve as a unique natural laboratory for addressing research questions facing seasonally snow‐covered, semi‐arid regions in a rapidly changing world and an excellent facility for providing student education and research training. 
    more » « less
  4. Marine aerosols strongly influence climate through their interactions with solar radiation and clouds. However, significant questions remain regarding the influences of biological activity and seawater chemistry on the flux, chemical composition, and climate-relevant properties of marine aerosols and gases. Wave channels, a traditional tool of physical oceanography, have been adapted for large-scale ocean-atmosphere mesocosm experiments in the laboratory. These experiments enable the study of aerosols under controlled conditions which isolate the marine system from atmospheric anthropogenic and terrestrial influences. Here, we present an overview of the 2019 Sea Spray Chemistry and Particle Evolution (SeaSCAPE) study, which was conducted in an 11 800 L wave channel which was modified to facilitate atmospheric measurements. The SeaSCAPE campaign sought to determine the influence of biological activity in seawater on the production of primary sea spray aerosols, volatile organic compounds (VOCs), and secondary marine aerosols. Notably, the SeaSCAPE experiment also focused on understanding how photooxidative aging processes transform the composition of marine aerosols. In addition to a broad range of aerosol, gas, and seawater measurements, we present key results which highlight the experimental capabilities during the campaign, including the phytoplankton bloom dynamics, VOC production, and the effects of photochemical aging on aerosol production, morphology, and chemical composition. Additionally, we discuss the modifications made to the wave channel to improve aerosol production and reduce background contamination, as well as subsequent characterization experiments. The SeaSCAPE experiment provides unique insight into the connections between marine biology, atmospheric chemistry, and climate-relevant aerosol properties, and demonstrates how an ocean-atmosphere-interaction facility can be used to isolate and study reactions in the marine atmosphere in the laboratory under more controlled conditions. 
    more » « less
  5. Abstract. Mercury (Hg) is a global atmospheric pollutant. In its oxidized form (HgII), it can readily deposit to ecosystems, where it may bioaccumulate and cause severe health effects. High HgII concentrations are reported in the free troposphere, but spatiotemporal data coverage is limited. Underestimation of HgII by commercially available measurement systems hinders quantification of Hg cycling and fate. During spring–summer 2021 and 2022, we measured elemental (Hg0) and oxidized Hg using a calibrated dual-channel system alongside trace gases, aerosol properties, and meteorology at the high-elevation Storm Peak Laboratory (SPL) above Steamboat Springs, Colorado. Oxidized Hg concentrations displayed diel and episodic behavior similar to previous work at SPL but were approximately 3 times higher in magnitude due to improved measurement accuracy. We identified 18 multi-day events of elevated HgII (mean enhancement of 36 pg m−3) that occurred in dry air (mean ± SD of relative humidity = 32 ± 16 %). Lagrangian particle dispersion model (HYSPLIT–STILT, Hybrid Single-Particle Lagrangian Integrated Trajectory–Stochastic Time-Inverted Lagrangian Transport) 10 d back trajectories showed that the majority of transport prior to events occurred in the low to middle free troposphere. Oxidized Hg was anticorrelated with Hg0 during events, with an average (± SD) slope of −0.39 ± 0.14. We posit that event HgII resulted from upwind oxidation followed by deposition or cloud uptake during transport. Meanwhile, sulfur dioxide measurements verified that three upwind coal-fired power plants did not influence ambient Hg at SPL. Principal component analysis showed HgII consistently inversely related to Hg0 and generally not associated with combustion tracers, confirming oxidation in the clean, dry free troposphere as its primary origin. 
    more » « less