skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on August 1, 2026

Title: The binding modes of quinones in flavoprotein oxidoreductases
Flavoprotein quinone reductases regenerate quinols which serve metabolic and antioxidant roles. These enzymes catalyze the two-electron oxidation of substrates and the subsequent two electron reduction of quinones. Despite the net two electron transfer between substrates, the binding mode of quinones is typically end-on to the flavin, rather than stacked, dictating that the oxidative half reaction cannot proceed via hydride transfer and must instead occur by two successive single electron transfers. Here we present a review of six of the most well-studied flavoprotein quinone reductases to establish a framework for discussing this positional orientation for the quinone oxidant. There are two non-mutually exclusive rationalizations for this binding mode where the flavin isoalloxazine acts as a redox partition. The first is that energetics of the single electron transfer pathway create a kinetic barrier to the reverse reaction, trapping electrons in the quinone pool and countering the high ratio of quinol to quinone present in the membrane. The second is that the end-on binding allows the enzymes to utilize different binding sites for cytosolic and membrane associated substrates, avoiding the need to desorb substrates. These effects may be additive and serve to funnel electrons into the quinone pool as efficiently as possible.  more » « less
Award ID(s):
2203593
PAR ID:
10613610
Author(s) / Creator(s):
;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Archives of Biochemistry and Biophysics
Volume:
770
Issue:
C
ISSN:
0003-9861
Page Range / eLocation ID:
110443
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Dihydroorotate dehydrogenases (DHODs) are common to all life and catalyze the oxidation of dihydroorotate (DHO) to orotate the precursor of all pyrimidine nucleotides. The core structure of all DHODs has a TIM-barrel topology (the PyrD subunit or domain) that harbors an FMN cofactor that interacts with DHO. There are two classes of DHOD enzymes. Each has unique structures and oxidant substrates that conserve part of the energy available by coupling the reaction to ATP synthesis. The class 1 enzymes are soluble and divided into classes 1A and 1B. Class 1A has fumarate as the electron acceptor forming succinate and is the simplest form of DHOD, successively binding DHO and fumarate at the same active site locale. Class 1B uses NAD+ as the oxidant and this form of DHOD is heterodimeric having, in addition to the PyrD subunit, a subunit (PyrK) whose structure is like those of ferredoxin reductases. PyrK adds a second active site with a bound FAD that interacts with the NAD+ substrate and includes an Fe2S2 center that resides at the interface of the subunits, forming a conduit for electrons. Class 2 DHODs have ubiquinone (UQ) as the electron acceptor. This form of DHOD is membrane associated via an N-terminal domain that also forms a quinone binding site end-on to the FMN xylene moiety. This arrangement uses the flavin to mediate between the substrates and as a redox partition between water-soluble NAD+ and lipid soluble UQ10. In this review, we summarize the structure and mechanism of DHOD enzymes. 
    more » « less
  2. Flavin-based electron bifurcation allows enzymes to redistribute energy among electrons by coupling endergonic and exergonic electron transfer reactions. Diverse bifurcating enzymes employ a two-flavin electron transfer flavoprotein (ETF) that accepts hydride from NADH at a flavin (the so-called bifurcating FAD, Bf-FAD). The Bf-FAD passes one electron exergonically to a second flavin thereby assuming a reactive semiquinone state able to reduce ferredoxin or flavodoxin semiquinone. The flavin that accepts one electron and passes it on via exergonic electron transfer is known as the electron transfer FAD (ET-FAD) and is believed to correspond to the single FAD present in canonical ETFs, in domain II. The Bf-FAD is believed to be the one that is unique to bifurcating ETFs, bound between domains I and III. This very reasonable model has yet to be challenged experimentally. Herein we used site-directed mutagenesis to disrupt FAD binding to the presumed Bf site between domains I and III, in the Bf-ETF from Rhodopseudomonas palustris ( Rpa ETF). The resulting protein contained only 0.80 ± 0.05 FAD, plus 1.21 ± 0.04 bound AMP as in canonical ETFs. The flavin was not subject to reduction by NADH, confirming absence of Bf-FAD. The retained FAD displayed visible circular dichroism (CD) similar to that of the ET-FAD of Rpa ETF. Likewise, the mutant underwent two sequential one-electron reductions forming and then consuming anionic semiquinone, reproducing the reactivity of the ET-FAD. These data confirm that the retained FAD in domain II corresponds the ET-FAD. Quantum chemical calculations of the absorbance and CD spectra of each of WT Rpa ETF's two flavins reproduced the observed differences between their CD and absorbance signatures. The calculations for the flavin bound in domain II agreed better with the spectra of the ET-flavin, and those calculated based on the flavin between domains I and III agreed better with spectra of the Bf-flavin. Thus calculations independently confirm the locations of each flavin. We conclude that the site in domain II harbours the ET-FAD whereas the mutated site between domains I and III is the Bf-FAD site, confirming the accepted model by two different tests. 
    more » « less
  3. Schepartz, Alanna (Ed.)
    The physiological role of dihydroorotate dehydrogenase (DHOD) enzymes is to catalyze the oxidation of dihydroorotate to orotate in pyrimidine biosynthesis. DHOD enzymes are structurally diverse existing as both soluble and membrane-associated forms. The Family 1 enzymes are soluble and act either as conventional single subunit flavin-dependent dehydrogenases known as Class 1A (DHODA) or as unusual heterodimeric enzymes known as Class 1B (DHODB). DHODBs possess two active sites separated by ∼20 Å, each with a noncovalently bound flavin cofactor. NAD is thought to interact at the FAD containing site, and the pyrimidine substrate is known to bind at the FMN containing site. At the approximate center of the protein is a single Fe2S2 center that is assumed to act as a conduit, facilitating one-electron transfers between the flavins. We present anaerobic transient state analysis of a DHODB enzyme from Lactoccocus lactis. The data presented primarily report the exothermic reaction that reduces orotate to dihydroorotate. The reductive half reaction reveals rapid two-electron reduction that is followed by the accumulation of a four-electron reduced state when NADH is added in excess, suggesting that the initial two electrons acquired reside on the FMN cofactor. Concomitant with the first reduction is the accumulation of a long-wavelength absorption feature consistent with the blue form of a flavin semiquinone. Spectral deconvolution and fitting to a model that includes reversibility for the second electron transfer reveals equilibrium accumulation of a flavin bisemiquinone state that has features of both red and blue semiquinones. Single turnover reactions with limiting NADH and excess orotate reveal that the flavin bisemiquinone accumulates with reduction of the enzyme by NADH and decays with reduction of the pyrimidine substrate, establishing the bisemiquinone as a fractional state of the two-electron reduced intermediate observed. 
    more » « less
  4. Newman, Dianne K. (Ed.)
    ABSTRACT Sideroxydans species are important chemolithoautotrophic Fe(II)-oxidizing bacteria in freshwater environments and play a role in biogeochemical cycling of multiple elements. Due to difficulties in laboratory cultivation and genetic intractability, the electron transport proteins required for the growth and survival of this organism remain understudied. In Sideroxydans lithotrophicus ES-1, it is proposed that the Mto pathway transfers electrons from extracellular Fe(II) oxidation across the periplasm to an inner membrane NapC/NirT family protein encoded by Slit_2495 to reduce the quinone pool. Based on sequence similarity, Slit_2495 has been putatively called CymA, a NapC/NirT family protein which in Shewanella oneidensis MR-1 oxidizes the quinol pool during anaerobic respiration of a wide range of substrates. However, our phylogenetic analysis using the alignment of different NapC/NirT family proteins shows that Slit_2495 clusters closer to NirT sequences than to CymA. We propose the name ImoA (inner membrane oxidoreductase) for Slit_2495. Our data demonstrate that ImoA can oxidize quinol pools in the inner membrane and is able to functionally replace CymA in S. oneidensis. The ability of ImoA to oxidize quinol in vivo as opposed to its proposed function of reducing quinone raises questions about the directionality and/or reversibility of electron flow through the Mto pathway in S. lithotrophicus. IMPORTANCE Fe(II)-oxidizing bacteria play an important role in biogeochemical cycles. At circumneutral pH, these organisms perform extracellular electron transfer, taking up electrons from Fe(II) outside the cell, potentially through a porin-cytochrome complex in the outer membrane encoded by the Mto pathway. Electrons from Fe(II) oxidation would then be transported to the quinone pool in the inner membrane via periplasmic and inner membrane electron transfer proteins. Directly demonstrating the functionality of genes in neutrophilic iron oxidizers is challenging due to the absence of robust genetic methods. Here, we heterologously expressed a NapC/NirT family tetraheme cytochrome ImoA, encoded by Slit_2495, an inner membrane protein from the Gram-negative Fe(II)-oxidizing bacterium Sideroxydans lithotrophicus ES-1, proposed to be involved in extracellular electron transfer to reduce the quinone pool. ImoA functionally replaced the inner membrane c-type cytochrome CymA in the Fe(III)-reducing bacterium Shewanella oneidensis. We suggest that ImoA may function primarily to oxidize quinol inS. lithotrophicus. 
    more » « less
  5. The flavodoxin of Rhodopseudomonas palustris CGA009 (Rp9Fld) supplies highly reducing equivalents to crucial enzymes such as hydrogenase, especially when the organism is iron-restricted. By acquiring those electrons from photodriven electron flow via the bifurcating electron transfer flavoprotein (ETF), Rp9Fld provides solar power to vital metabolic processes. To understand Rp9Fld's ability to work with diverse partners, we solved its crystal structure. We observe the canonical flavodoxin (Fld) fold and features common to other long-chain Flds, but not all the surface loops thought to recognize partner proteins. Moreover some of the loops display alternative structures and dynamics. To advance studies of protein-protein associations and conformational consequences, we assigned the 19F NMR signals of all 5 tyrosines (Tyrs). Our electrochemical measurements show that incorporation of 3-19F-Tyr in place of Tyr has only a modest effect on Rp9Fld's redox properties even though Tyrs flank the flavin on both sides. Meanwhile, the 19F probes demonstrate the expected paramagnetic effect, with signals from nearby Tyrs becoming broadened beyond detection when the flavin semiquinone is formed. However the temperature dependencies of chemical shifts and linewidths reveal dynamics affecting loops close to the flavin, and regions that bind to partners in a variety of systems. These coincide with patterns of amino acid type conservation but not retention of specific residues, arguing against detailed specificity with respect to partners. We propose that the loops surrounding the flavin adopt altered conformations upon binding to partners and may even participate actively in electron transfer. 
    more » « less