skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Orogen-scale inverted metamorphism during Cretaceous–Paleogene terminal suturing along the North American Cordillera, Alaska, USA
Abstract The northern North American Cordilleran margin has been active for >200 million years, as recorded by punctuated phases of crustal growth and deformation. Accretion of the exotic Wrangellia Composite Terrane (Insular Belt) is considered the largest addition of juvenile crust to the Cordilleran margin, though margin-parallel translation during the Cenozoic has obscured much of the accretionary history. Three zones of inverted metamorphism spatially correspond to the Insular–North American suture zone from north to south: (1) Clearwater Mountains; (2) Kluane Lake; and (3) Coast Mountains, each preserving kinematics indicative of thrusting of North American–derived rocks over Insular-derived assemblages. We performed in situ monazite petrochronology on samples collected across strike in both the Clearwater and Coast Mountain regions. New and recently published data from these three metamorphic belts indicate that thrust-sense deformation accompanied the formation of inverted metamorphic isograds from 72 to 56 Ma. We leverage recent estimates of Denali fault offset to reconstruct a >1000-km-long zone of inverted metamorphism and interpret it as the Insular–North America terminal suture.  more » « less
Award ID(s):
2336081
PAR ID:
10613629
Author(s) / Creator(s):
; ; ; ; ; ; ;
Editor(s):
Strachan, R
Publisher / Repository:
Geological Society of America
Date Published:
Journal Name:
Geology
Volume:
52
Issue:
12
ISSN:
0091-7613
Page Range / eLocation ID:
933 to 938
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Terrane accretion forms lithospheric-scale fault systems that commonly experience long and complex slip histories. Unraveling the evolution of these suture zone fault systems yields valuable information regarding the relative importance of various upper crustal structures and their linkage through the lithosphere. We present new bedrock geologic mapping and geochronology data documenting the geologic evolution of reactivated shortening structures and adjacent metamorphic rocks in the Alaska Range suture zone at the inboard margin of the Wrangellia composite terrane in the eastern Alaska Range, Alaska, USA. Detrital zircon uranium-lead (U-Pb) age spectra from metamorphic rocks in our study area reveal two distinct metasedimentary belts. The Maclaren schist occupies the inboard (northern) belt, which was derived from terranes along the western margin of North America during the mid- to Late Cretaceous. In contrast, the Clearwater metasediments occupy the outboard (southern) belt, which was derived from arcs built on the Wrangellia composite terrane during the Late Jurassic to Early Cretaceous. A newly discovered locality of Alaska-type zoned ultramafic bodies within the Clearwater metasediments provides an additional link to the Wrangellia composite terrane. The Maclaren and Clearwater metasedimentary belts are presently juxtaposed by the newly identified Valdez Creek fault, which is an upper crustal reactivation of the Valdez Creek shear zone, the Late Cretaceous plate boundary that initially brought them together. 40Ar/39Ar mica ages reveal independent post-collisional thermal histories of hanging wall and footwall rocks until reactivation localized on the Valdez Creek fault after ca. 32 Ma. Slip on the Valdez Creek fault expanded into a thrust system that progressed southward to the Broxson Gulch fault at the southern margin of the suture zone and eventually into the Wrangellia terrane. Detrital zircon U-Pb age spectra and clast assemblages from fault-bounded Cenozoic gravel deposits indicate that the thrust system was active during the Oligocene and into the Pliocene, likely as a far-field result of ongoing flat-slab subduction and accretion of the Yakutat microplate. The Valdez Creek fault was the primary reactivated structure in the suture zone, likely due to its linkage with the reactivated boundary zone between the Wrangellia composite terrane and North America in the lithospheric mantle. 
    more » « less
  2. Abstract The plate-boundary conditions of the Mesozoic North American Cordillera remain poorly constrained, but most studies support large (>800 km) southward motion of the Insular and Intermontane superterranes during Jurassic–Cretaceous time. An implicit feature in these models of large coastwise displacements is the presence of one or more continentalscale sinistral strike-slip faults that could have dismembered and displaced terrane fragments southward along the western margin of North America prior to the onset of mid-Cretaceous shortening and dextral strike-slip faulting. In this study, we documented a system of sinistral intra-arc shear zones within the Insular superterrane that may have accommodated large southward motion. Employment of a new large-n igneous zircon U-Pb method more than doubled the precision of measurements obtained by laser ablation–inductively coupled plasma–mass spectrometry (from ~1% to 0.5%) and allowed us to demonstrate the close temporal-spatial relationship between magmatism and deformation by dating comagmatic crosscutting phases. Crystallization ages of pre-, syn-, and postkinematic intrusions show that the intra-arc shear zones record an Early Cretaceous phase of sinistral oblique convergence that terminated between 107 and 101 Ma. Shear zone cessation coincided with: (1) collapse of the Gravina basin, (2) development of a single voluminous arc that stitched the Insular and Intermontane superterranes together, and (3) initiation of eastwest contractional deformation throughout the Coast Mountains. We interpret these concurrent tectono-magmatic events to mark a shift in plate kinematics from a sinistral-oblique system involving separate terranes and intervening ocean basins to a strongly convergent two-plate margin involving a single oceanic plate and the newly assembled western margin of North America. 
    more » « less
  3. The Taconic thrust belt in New England is the type locality of the Ordovician Taconic orogeny, the result of partial subduction of the rifted Laurentian margin beneath the Gondwanan-derived Moretown terrane (MT) and the Shelburne Falls arc. Evidence for Ordovician deformation and metamorphism is only preserved in rocks of the Laurentian margin; Taconic deformation and metamorphism in the MT and suture zone were overprinted by Devonian Acadian tectonism. New thermochronological data from the Taconic thrust belt indicate that many faults were active during the Silurian and Devonian, well after the Taconic orogeny. Crust under accreted terranes in New England is much thinner (~30 km) than below the Grenville belt along the Laurentian margin (~45 km), and Li et al. (2018) noted a particularly abrupt change in crustal thickness in southwestern New England near the suture between Laurentia and the MT. New seismic evidence indicates that the abrupt offset in Moho depth in CT and MA occurs east of an anisotropic region (~25 km wide and ~15 km thick) that lies between the shallow Moho of the MT and the deep Moho of Laurentia. The Taconic and Acadian orogens are narrower in southern New England than they are to the north, suggesting greater crustal shortening, and high-grade metamorphic rocks exposed in southern New England indicate greater erosion of overlying crust. Hillenbrand et al. (2021) proposed that an Acadian plateau existed in southern New England from 380 to 330 Ma and that plateau collapse after 330 Ma led to the abrupt Moho offset. We suggest that an indenter in southern New England focused the Acadian collision between Laurentia and Avalonia leading to greater crustal shortening and uplift than elsewhere the Appalachians. The east-dipping suture zone and Neoproterozoic normal faults cutting the leading edge of Laurentia were reactivated as west-directed thrust faults. Further, the diffuse fault zone that displaced the MT and the leading edge of the Laurentian margin penetrated the crust and displaced the Moho beneath the MT creating a double Moho near the suture. The anisotropic zone between the double Moho region is likely composed of crustal and mantle rocks bounded by faults. It is unclear how far east rifted Grenville crust extends under the MT; it is possible that the MT is no longer above its original lithospheric mantle. 
    more » « less
  4. Abstract Mesozoic crustal shortening in the North American Cordillera’s hinterland was related to the construction of the Nevadaplano orogenic plateau. Petrologic and geochemical proxies in Cordilleran core complexes suggest substantial Late Cretaceous crustal thickening during plateau construction. In eastern Nevada, geobarometry from the Snake Range and Ruby Mountains-East Humboldt Range-Wood Hills-Pequop Mountains (REWP) core complexes suggests that the ~10–12 km thick Neoproterozoic-Triassic passive-margin sequence was buried to great depths (>30 km) during Mesozoic shortening and was later exhumed to the surface via high-magnitude Cenozoic extension. Deep regional burial is commonly reconciled with structural models involving cryptic thrust sheets, such as the hypothesized Windermere thrust in the REWP. We test the viability of deep thrust burial by examining the least-deformed part of the REWP in the Pequop Mountains. Observations include a compilation of new and published peak temperature estimates (n=60) spanning the Neoproterozoic-Triassic strata, documentation of critical field relationships that constrain deformation style and timing, and new 40Ar/39Ar ages. This evidence refutes models of deep regional thrust burial, including (1) recognition that most contractional structures in the Pequop Mountains formed in the Jurassic, not Cretaceous, and (2) peak temperature constraints and field relationships are inconsistent with deep burial. Jurassic deformation recorded here correlates with coeval structures spanning western Nevada to central Utah, which highlights that Middle-Late Jurassic shortening was significant in the Cordilleran hinterland. These observations challenge commonly held views for the Mesozoic-early Cenozoic evolution of the REWP and Cordilleran hinterland, including the timing of contractional strain, temporal evolution of plateau growth, and initial conditions for high-magnitude Cenozoic extension. The long-standing differences between peak-pressure estimates and field relationships in Nevadan core complexes may reflect tectonic overpressure. 
    more » « less
  5. A microstructural and thermochronometric analysis of the Coyote Mountains detachment shear zone provides new insight into the collapse of the southern North American Cordillera. The Coyote Mountains is a metamorphic core complex that makes up the northern end of the Baboquivari Mountains in southern Arizona. The Baboquivari Mountains records several episodes of crustal shortening and thickening, and regional metamorphism, including the Late Cretaceous-early Paleogene Laramide orogeny which is locally expressed by the Baboquivari thrust fault. Thrusting and shortening were accompanied by magmatic activity recorded by intrusion of Paleocene muscovite-biotite-garnet peraluminous granites such as the ~58 Ma Pan Tak Granite, interpreted as anatectic melts representing the culmination of the Laramide orogeny. Following Laramide crustal shortening, the northern end of the Baboquivari Mountains was exhumed along a top-to-the-north detachment shear zone, which resulted in the formation of the Coyote Mountains metamorphic core complex. Structural and microstructural analysis show that the detachment shear zone evolved under a strong component of non-coaxial (simple shear) deformation, at deformation conditions of ~450 ± 50°C, under a differential stress of ~60 MPa, and a strain rate of 1.5 ×10-11 s-1 to 5.0 × 10-13 s-1 at depth of ~11–14 km. Detailed 40Ar/39Ar geochronology of biotite and muscovite, in the context of the deformation conditions determined by quartz microstructures, suggests that the mylonitization associated with the formation of the Coyote Mountains metamorphic core complex started at ~29 Ma (early Oligocene). Apatite fission track ages indicate that the footwall of the Coyote Mountains metamorphic core complex experienced rapid exhumation to the upper crust by ~24 Ma. The fact that mylonitization and rapid extensional exhumation post-dates Laramide thickening by ~30 Myr indicates that crustal thickness alone was insufficient to initiate extensional tectonic and required an additional driving force. The timing of mylonitization and rapid exhumation documented here and in other MCCs are consistent with the hypothesis that slab rollback and the effect of a slab window trailing the Mendocino Triple Junction have been critical in driving the development of the MCCs of the southwest. 
    more » « less