Abstract Cellulosic bioenergy is a primary land‐based climate mitigation strategy, with soil carbon (C) storage and nitrogen (N) conservation as important mitigation elements. Here, we present 13 years of soil C and N change under three cellulosic cropping systems: monoculture switchgrass (Panicum virgatumL.), a five native grasses polyculture, and no‐till corn (Zea maysL.). Soil C and N fractions were measured four times over 12 years. Bulk soil C in the 0–25 cm depth at the end of the study period ranged from 28.4 (± 1.4 se) Mg C ha−1in no‐till corn, to 30.8 (± 1.4) Mg C ha−1in switchgrass, and to 34.8 (± 1.4) Mg C ha−1in native grasses. Mineral‐associated organic matter (MAOM) ranged from 60% to 90% and particulate organic matter (POM) from 10% to 40% of total soil C. Over 12 years, total C as well as both C fractions persisted under no‐till corn and switchgrass and increased under native grasses. In contrast, POM N stocks decreased 33% to 45% across systems, whereas MAOM N decreased only in no‐till corn and by less than 13%. Declining POM N stocks likely reflect pre‐establishment land use, which included alfalfa and manure in earlier rotations. Root production and large soil aggregate formation explained 69% (p < 0.001) and 36% (p = 0.024) of total soil C change, respectively, and 60% (p = 0.020) and 41% (p = 0.023) of soil N change, demonstrating the importance of belowground productivity and soil aggregates for producing and protecting soil C and conserving soil N. Differences between switchgrass and native grasses also indicate a dependence on plant diversity. Soil C and N benefits of bioenergy crops depend strongly on root productivity and pre‐establishment land use.
more »
« less
Data from: Long-term changes in soil carbon and nitrogen fractions in switchgrass, native grasses, and no-till corn bioenergy production systems
Cellulosic bioenergy is a primary land-based climate mitigation strategy, with soil carbon (C) storage and nitrogen (N) conservation as important mitigation elements. Here, we present 13 years of soil C and N change under three cellulosic cropping systems: monoculture switchgrass (Panicum virgatum L.), a five native grasses polyculture, and no-till corn (Zea mays L.). Soil C and N fractions were measured four times over 12 years. Bulk soil C in the 0–25 cm depth at the end of the study period ranged from 28.4 (± 1.4 se) Mg C ha−1 in no-till corn, to 30.8 (± 1.4) Mg C ha−1 in switchgrass, and to 34.8 (± 1.4) Mg C ha−1 in native grasses. Mineral-associated organic matter (MAOM) ranged from 60% to 90% and particulate organic matter (POM) from 10% to 40% of total soil C. Over 12 years, total C as well as both C fractions persisted under no-till corn and switchgrass and increased under native grasses. In contrast, POM N stocks decreased 33% to 45% across systems, whereas MAOM N decreased by less than 13% and only in no-till corn. Declining POM N stocks likely reflect pre-establishment land use, which included alfalfa and manure in earlier rotations. Root production and large soil aggregate formation explained 69% (p < 0.001) and 36% (p = 0.024) of total soil C change, respectively, and 60% (p = 0.020) and 41% (p = 0.023) of soil N change, demonstrating the importance of belowground productivity and soil aggregates for producing and protecting soil C and conserving soil N. Differences between switchgrass and native grasses also indicate a dependence on plant diversity. Soil C and N benefits of bioenergy crops depend strongly on root productivity and pre-establishment land use. See the Materials and Methods of the associated publication for procedures on sampling and processing, and section 2.9 Statistical analysis for statistical models. The R software was used for all analyses (R Core Team, 2014); the R scripts are provided in the file Statistical_Analysis.R. R Core Team. (2014). R: A language and environment for statistical computing. R Foundation for Statistical Computing. http://www.Rproject.org/
more »
« less
- PAR ID:
- 10464861
- Publisher / Repository:
- Dryad
- Date Published:
- Edition / Version:
- 4
- Subject(s) / Keyword(s):
- Soil carbon soil nitrogen Bioenergy feedstock Zea mays Panicum virgatum native grasses mineral-assoicated organic matter Particulate organic matter root productivity soil aggregate Biofuel Cropping System Experiment Biofuel feedstocks FOS: Earth and related environmental sciences
- Format(s):
- Medium: X Size: 22377 bytes
- Size(s):
- 22377 bytes
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT Switchgrass (Panicum virgatumL.) is a native North American grass currently considered a high‐potential bioenergy feedstock crop. However, previous reports questioned its effectiveness in generating soil organic carbon (SOC) gains, with resultant uncertainty regarding the monoculture switchgrass's impact on the environmental sustainability of bioenergy agriculture. We hypothesize that the inconsistencies in past SOC accrual results might be due, in part, to differences in prior land management among the systems subsequently planted to switchgrass. To test this hypothesis, we measured SOC and other soil properties, root biomass, and switchgrass growth in an experimental site with a 30‐year history of contrasting tillage and N‐fertilization treatments, 7 years after switchgrass establishment. We determined switchgrass' monthly gross primary production (GPP) for six consecutive years and conducted deep soil sampling. Nitrogen fertilization expectedly stimulated switchgrass growth; however, a tendency for better plant growth was also observed under unfertilized settings in the former no‐till soil. In topsoil, SOC significantly increased from 2007 to 2023 in fertilized treatments of both tillage histories, with the greatest increase observed in fertilized no‐till. Fertilized no‐till also had the highest particulate organic matter content in the topsoil, with no differences among the treatments observed in deeper soil layers. However, regardless of fertilization, the tillage history had a strong effect on stratification with depth of SOC, total N, and microbial biomass C. Results suggested that historic and ongoing N fertilization had a substantial impact on switchgrass growth and soil characteristics, while tillage legacy had a much weaker, but still discernible, effect.more » « less
-
Annual U.S. production of bioethanol, primarily produced from corn starch in the U.S. Midwest, rose to 57 billion liters in 2021, which fulfilled the required conventional biofuel target set forth by the Energy Independence and Security Act (EISA) of 2007. At the same time, the U.S. fell short of the cellulosic or advanced biofuel target of 79 billion liters. The growth of bioenergy grasses (e.g., Miscanthus and switchgrass) across the Central and Eastern U.S. has the potential to feed enhanced cellulosic bioethanol production and, if successful, increase renewable fuel volumes. However, water consumption and climate change and its extremes are critical concerns in corn and bioenergy grass productivity. These concerns are compounded by the demands on potentially productive land areas and water devoted to producing biofuels. This is a fundamental Food-Energy-Water System (FEWS) nexus challenge. We apply a computational framework to estimate potential bioenergy yield and conversion to bioethanol yield across the U.S., based on crop field studies and conversion technology analysis for three crops—corn, Miscanthus, and two cultivars of switchgrass (Cave-in-Rock and Alamo). The current study identifies regions where each crop has its highest yield across the Center and Eastern U.S. While growing bioenergy grasses requires more water than corn, one advantage they have as a source of bioethanol is that they control nitrogen leaching relative to corn. Bioenergy grasses also maintain steadily high productivity under extreme climate conditions, such as drought and heatwaves in the year 2012 over the U.S. Midwest, because the perennial growing season and the deeper and denser roots can ameliorate the soil water stress. While the potential ethanol yield could be enhanced using energy grasses, their practical success in becoming a potential source of ethanol yield remains limited by socio-economic and operational constraints and concerns regarding competition with food production.more » « less
-
null (Ed.)Abstract Excessive phosphorus (P) applications to croplands can contribute to eutrophication of surface waters through surface runoff and subsurface (leaching) losses. We analyzed leaching losses of total dissolved P (TDP) from no-till corn, hybrid poplar ( Populus nigra X P. maximowiczii ), switchgrass ( Panicum virgatum ), miscanthus ( Miscanthus giganteus ), native grasses, and restored prairie, all planted in 2008 on former cropland in Michigan, USA. All crops except corn (13 kg P ha −1 year −1 ) were grown without P fertilization. Biomass was harvested at the end of each growing season except for poplar. Soil water at 1.2 m depth was sampled weekly to biweekly for TDP determination during March–November 2009–2016 using tension lysimeters. Soil test P (0–25 cm depth) was measured every autumn. Soil water TDP concentrations were usually below levels where eutrophication of surface waters is frequently observed (> 0.02 mg L −1 ) but often higher than in deep groundwater or nearby streams and lakes. Rates of P leaching, estimated from measured concentrations and modeled drainage, did not differ statistically among cropping systems across years; 7-year cropping system means ranged from 0.035 to 0.072 kg P ha −1 year −1 with large interannual variation. Leached P was positively related to STP, which decreased over the 7 years in all systems. These results indicate that both P-fertilized and unfertilized cropping systems may leach legacy P from past cropland management.more » « less
-
Abstract Perennial grain crops are expected to sequester soil carbon (C) and improve soil health due to their large and extensive root systems. To examine the rate of initial soil C accumulation in a perennial grain crop, we compared soil under perennial intermediate wheatgrass (IWG) with that under annual winter wheat 4 years after the crops were first planted. In addition, we tested the effect of three nitrogen (N) sources on C pools: Low available N (Low N (Organic N); 90 kg N ha −1 poultry litter), moderately available N (Mid N; 90 kg N ha −1 urea) and high available N (High N; 135 kg N ha −1 urea). We measured aboveground C (grain + straw), and coarse and fine root C to a depth of 1 m. Particulate organic matter (POM-C), fractionated by size, was used to indicate labile and more stabilized soil C pools. At harvest, IWG had 1.9 times more straw C and up to 15 times more root C compared with wheat. There were no differences in the size of the large (6 mm–250 µm) or medium (250–53 µm) POM-C fractions between wheat and IWG ( P > 0.05) in surface horizons (0–10 cm). Large POM-C under IWG ranged from 3.6 ± 0.3 to 4.0 ± 0.7 g C kg soil −1 across the three N rates, similar to wheat under which large POM-C ranged from 3.6 ± 1.4 to 4.7 ± 0.7 g C kg soil −1 . Averaged across N level, medium POM-C was 11.1 ± 0.8 and 11.3 ± 0.7 g C kg soil −1 for IWG and wheat, respectively. Despite IWG's greater above and belowground biomass (to 70 cm), POM-C fractions in IWG and wheat were similar. Post-hoc power analysis revealed that in order to detect differences in the labile C pool at 0–10 cm with an acceptable power (~80%) a 15% difference would be required between wheat and IWG. This demonstrates that on sandy soils with low cation exchange capacity, perennial IWG will need to be in place for longer than 4 years in order to detect an accumulated soil C difference > 15%.more » « less