skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 4, 2026

Title: Quenching a Thirsty Planet: Teaching the Dynamics of Water Scarcity and Sustainability Through the Water Cycle
Water scarcity poses a significant global challenge, which is often overlooked, particularly in regions with abundant water resources. This article outlines a curriculum designed for middle school students (grades 6–8) that addresses the dynamics of water scarcity and sustainability through five detailed lessons centered around the water cycle. The curriculum is designed to meet the Next Generation Science Standards, specifically focusing on standards ESS2.C and ESS3.C. These standards highlight the importance of water in Earth’s surface processes and the impact of human activities on the environment. The lessons also emphasize scientific modeling and using data as evidence as crucial to understanding water security and action. By emphasizing student voice and incorporating diverse perspectives, the curriculum aims to educate students and empower them to actively address real-world environmental challenges.  more » « less
Award ID(s):
2201192
PAR ID:
10613652
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
NSTA
Date Published:
Journal Name:
Science Scope
Volume:
48
Issue:
2
ISSN:
0887-2376
Page Range / eLocation ID:
22 to 29
Subject(s) / Keyword(s):
Water Cycle Socio-Scientific Issues Modeling Argumentation NGSS
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Three Northern Arapaho and Eastern Shoshone–serving districts formed a researcher–practitioner partnership with the Wyoming Department of Education, the American Institutes for Research®, and BootUp Professional Development to advance the computer science (CS) education of their elementary students in ways that strengthen their Indigenous identities and knowledges. In this paper, we share experiences from 2019 to 2022 with our curriculum development, professional development (PD), and classroom implementation. The researcher–practitioner partnership developed student and teacher materials to support elementary CS lessons aligned to Wyoming’s CS standards and “Indian Education for All” social studies standards. Indigenous community members served as experts to codesign culturally relevant resources. Teachers explored the curriculum resources during three 4-hour virtual and in-person PD sessions. The sessions were designed to position the teachers as designers of CS projects they eventually implemented in their classrooms. Projects completed by students included simulated interviews with Indigenous heroes and animations of students introducing themselves in their Native languages. Teachers described several positive effects of the Scratch lessons on students, including high engagement, increased confidence, and successful application of several CS concepts. The teachers also provided enthusiastic positive reviews of the ways the CS lessons allowed students to explore their Indigenous identities while preparing to productively use technology in their futures. The Wind River Elementary CS Collaborative is one model for how a researcher–practitioner partnership can utilize diverse forms of expertise, ways of knowing, and Indigenous language to engage in curriculum design, PD, and classroom implementation that supports culturally sustaining CS pedagogies in Indigenous communities. 
    more » « less
  2. In the early stages of K-12 Computer Science (CS) curriculum development, standards were not yet established, and the primary objective, especially in younger grades, was to spark students' interest in CS. While this remains a vital goal, the development of the CS standards underscores the importance of standards-aligned curriculum, ensuring equitable, content rich CS education for all students. We show that standards alignment is most useful when it includes details about which aspects of the standards a curriculum aligns with. This paper describes our process of decomposing five middle school CS standards into granular learning targets using an evidence-centered design approach and mapping the learning targets onto individual lessons from one widely popular middle school CS curriculum. We discuss the potential implications of this work on curriculum design, curriculum selection, and teacher professional learning. 
    more » « less
  3. Existing research has primarily delved into the realm of computer science outreach aimed at K-12 students, with a focus on both informal and non-formal approaches. However, a noticeable research gap exists when it comes to cybersecurity outreach tailored specifically for underserved secondary school students. This article addresses this void by presenting an iterative pilot of a cybersecurity curriculum. This innovative curriculum integrates a one-week summer camp and a series of 1.5-hour workshops designed to provide students with a comprehensive understanding of cybersecurity. The overarching goal of this approach is to foster wider participation in the field of computing, particularly in the realm of cybersecurity. This research aims to spark interest among students who may currently face limited access to computing resources. The cybersecurity lessons featured in this curriculum adhere to the standards set by Cyber.org, an organization supported by the Cybersecurity and Infrastructure Agency (CISA). Key topics covered include networking, the confidentiality, integrity, and availability (CIA) triad, and operating system security. This paper not only outlines the process of creating and implementing these cybersecurity lessons but also emphasizes the iterative refinement process they underwent. The discussion primarily revolves around the valuable insights gained from implementing this curriculum at two prominent public universities in the eastern United States. By bridging the research gap and focusing on practical applications, this initiative contributes significantly to the broader discourse on cybersecurity education for underserved secondary school students. 
    more » « less
  4. This engineering curriculum is designed for students in 6-8 grade where they learn about the concept of polarity and mixing through the phenomenon of oil separating from water by simulating an oil spill that demonstrates the impact of these molecular qualities on the environment. In the first part of the activity, students get familiar with the concept of polarity and how it causes oil to float on water through molecular models and demonstrations. The second part entails a simulation of an oil spill in the ocean, where students are given a variety of tools and will engineer their own solutions to clean up the spill through trial and testing. Finally, they discuss the real-world methods used to clean up oil spills, and their impact on the environment. This engineering curriculum aligns to Next Generation Science Standards. 
    more » « less
  5. A research-practice partnership (RPP) used a teacher co-design process, supported by equity-focused professional development, to create an elementary-level curriculum that integrates content, practices, and learning progressions from state computing standards with other standards-based curricula. Most district students are part of historically marginalized groups and the RPP chose to develop an equity and inclusion-focused curriculum that would be taught in all elementary classrooms to all students. Twelve teacher teams, supported by researchers and ELL and SPED specialists, designed, piloted, and documented 23 modules of 4-8, 45-minute lessons across K-5. Early adopter teachers followed the pilots and implemented the modules in their classrooms with the goal of facilitating adoption by all elementary classroom teachers. After being interrupted by the pandemic, the RPP developed a strategy where principals in cohorts of schools agreed to collaborate with RPP school-based lead teachers to establish professional learning communities (PLCs) to support classroom implementation of the modules. Eleven schools participated in a 2021-22 cohort and nine more schools joined in 2022-23. Centering equity, PLCs, and quality module documentation and materials are key to sustaining and evolving the CSforAll curriculum. The modules were revised based on feedback obtained from ELL and SPED specialists, early adopters, teacher coordinators, researchers, and district curriculum directors. Using a large data set of meeting and classroom observation records, interviews, field notes, focus groups, surveys, and module documentation, we track the evolution of the curriculum and provide a detailed analysis of one module as an example. 
    more » « less