Grand Challenges (GCs) are complex, global, and multifaceted science and societal problems such as climate change, viral pandemics, loss of biodiversity, and quests for new energy sources. In this article, we advance a position, based on current research and theory, that GCs should be a prominent feature of the science curriculum. This move towards a GC-based curriculum challenges the positioning of canonical scientific concepts as the central organising feature of the curriculum, which is typically the default position of most science education programmes. A GC-based curriculum can create natural avenues for students to learn science, develop an interest in science, and build media and information literacy skills to become informed agents of change. Design principles, which help to define what a GC curriculum can look like and guide creation of GC materials, are introduced. These design principles call for the GC curriculum to be contextualised in global issues with local connections, culturally responsive, practice oriented, attentive to student voice, and coherent within and across units. Examples are provided to demonstrate how these design principles are implemented in a sample curriculum.
more »
« less
This content will become publicly available on January 20, 2026
Implementing Grand Challenges: A Case Study of Implementing Innovative Curricula
In response to the growing emphasis on addressing global socio-scientific issues like climate change and viral pandemics in K-12 education, we designed three socio-scientific units for middle school science. We call this curriculum Grand Challenges (GC). The GC curriculum shifts from traditional methods to a focus on socio-scientific issues that resonate locally and globally and prepare students for future complexities. GC is a response to the evolving landscape of science education which emphasizes transformative, future-focused approaches that engage students with science content through contextualized, disciplinary practices. This study explores the implementation of the GC curriculum by two teachers, highlighting their choices and the impact on instruction. The findings reveal the crucial role of teachers in actualizing innovative curricula, the challenges of adopting new practices, and the need for robust support systems. This work contributes to understanding how to effectively integrate socio-scientific issues into science education, fostering critical thinking and global citizenship among students.
more »
« less
- Award ID(s):
- 2201192
- PAR ID:
- 10613660
- Publisher / Repository:
- Springer
- Date Published:
- Journal Name:
- Research in Science Education
- ISSN:
- 0157-244X
- Subject(s) / Keyword(s):
- Socio-scientific Curriculum Implementation Science Practices Innovative
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Engaging students in science learning that integrates disciplinary knowledge and practices such as computational thinking (CT) is a challenge that may represent unfamiliar territory for many teachers. CompHydro Baltimore is a collaborative partnership aimed at enacting Next Generation Science Standards (NGSS)–aligned instruction to support students in developing knowledge and practice reflective of the goals laid out in A Framework for K–12 Science Education (National Research Council 2012) “... that by the end of 12th grade, all students possess sufficient knowledge of science and engineering to engage in public discussion on related issues … and are careful consumers of scientific and technological information related to their everyday lives.” This article presents the results of a partnership that generated a new high school level curriculum and teacher professional development program that tackled the challenge of integrating hydrologic learning with computational thinking as applied to a real-world issue of flooding. CompHydro Baltimore produced Baltimore Floods, a six-lesson high school unit that builds students’ water literacy by engaging them in computational thinking (CT) and modeling practices as they learn about water system processes involved in urban flooding (See Computational Thinking and Associated Science Practices). CompHydro demonstrates that broad partnerships can address these challenges, bringing together the diverse expertise necessary to develop innovative CT-infused science curriculum materials and the teacher supports needed for successful implementation.more » « less
-
The Engineering Design in Scientific Inquiry (EDISIn) Project addresses the engineering preparation of secondary science teachers by embedding engineering design into a science course for single-subject STEM education majors (future secondary teachers), and developing a sequence of lesson plans and annotated video for faculty who seek to embed engineering design in their science courses. While undergraduate laboratories are rich with designed experimental apparatus, it is rare that students themselves play a role in designing and producing artifacts in the service of scientific inquiry. Our expectation is that (1) existing science courses offer opportunities for students to engage meaningfully with engineering practices, by solving design challenges that emerge in the construction of scientific ideas; and (2) doing so can capitalize on existing curricula that science education has developed, facilitating the adoption of engineering design into preservice teacher education. As part of NSF’s Improving Undergraduate STEM Education (IUSE) funding program, this proposal is part of a broader effort to transform undergraduate science education, preparing students to be innovators and leaders in STEM.more » « less
-
Abstract Socioscientific issues (SSI) are problems involving the deliberate use of scientific topics that require students to engage in dialogue, discussion, and debate. The purpose of this project is to utilize issues that are personally meaningful and engaging to students, require the use of evidence-based reasoning, and provide a context for scientific information. Social justice is the pursuit of equity and fairness in society by ensuring that all individuals have opportunities to challenge and address inequalities and injustices to create a more just and equitable society for all (Killen et al. Human Development 65:257–269, 2021). By connecting science, technology, engineering, and mathematics (STEM) concepts to personally meaningful contexts, SSI can empower students to consider how STEM-based issues reflect moral principles and elements of virtue in their own lives and the world around them (Zeidler et al. Science Education 89:357–377, 2005). We employed a qualitative research design to answer the following questions: (1) In what ways, if any, did teachers help students grow their knowledge and practices on social justice through socioscientific issues? (2) In teachers’ perceptions, what components of SSI did students learn and what are their challenges? (3) In teachers’ perceptions, what are students’ stances on social justice? After completing the first year and second-year professional development programs, grades 6–12 STEM teachers were asked to complete a reflection on classroom artifacts. Teachers were asked to select student artifacts (e.g. assignments, projects, essays, videos, etc.) that they thought exemplified the students’ learning of SSI and stance on social justice. Based on 21 teacher-submitted examples of exemplar student work, we saw the following example pedagogies to engage their students on social justice: (a) making connections to real-world experiences, (b) developing a community project, (c) examining social injustice, and (d) developing an agency to influence/make changes. According to teachers, the most challenging SSI for students was elucidating their own position/solution, closely followed by employing reflective scientific skepticism. Moreover, the students exemplified reflexivity, metacognition, authentic activity, and dialogic conversation. Using SSI in classrooms allows students to tackle real-world problems, blending science and societal concerns. This approach boosts understanding of scientific concepts and their relevance to society. Identifying methods like real-world connections and examining social injustice helps integrate social justice themes into science education through SSI. Overall, SSI promotes interdisciplinary learning, critical thinking, and informed decision-making, enriching science education socially. This study highlights the value of integrating SSI in science education to engage students with social justice.more » « less
-
Abstract Current research underscores that there are only a few evidence-based programs that teach STEM (science, technology, engineering, and mathematics) as part of their curriculum, especially for autistic students. Even fewer programs focus on engineering and design learning. Hence, we developed an informal afterschool maker program to develop autistic and non-autistic students’ interests in engineering to understand their experiences learning STEM concepts and values while applying the engineering mindset to develop projects. This qualitative study aimed to explore and understand students’ experiences participating in STEM activities in the maker club. We interviewed twenty-six students (seventeen autistic and nine non-autistic), nine teachers, and thirteen parents representing diverse cultural and socio-economic backgrounds across three public middle schools in a large urban metropolitan city between 2018 and 2019. Our thematic analysis yielded four themes:(1) active participation in STEM; (2) curiosity about STEM topics, concepts, and practices, (3) capacity-building to engage in STEM learning; and 4) understanding of the importance of STEM education in daily life.The results of this study enabled us to understand that students were deeply engaged with the content and curriculum of our program, expanded their knowledge base about scientific concepts, used engineering-specific scientific terminologies, and engaged with the engineering design process to conceptualize, test, improvise, and problem-solve. Furthermore, this afterschool engineering education program created a safe, nurturing, and stimulating environment for students to build engineering readiness skills.more » « less
An official website of the United States government
