skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Using computational thinking and modeling to build water and watershed literacy
Engaging students in science learning that integrates disciplinary knowledge and practices such as computational thinking (CT) is a challenge that may represent unfamiliar territory for many teachers. CompHydro Baltimore is a collaborative partnership aimed at enacting Next Generation Science Standards (NGSS)–aligned instruction to support students in developing knowledge and practice reflective of the goals laid out in A Framework for K–12 Science Education (National Research Council 2012) “... that by the end of 12th grade, all students possess sufficient knowledge of science and engineering to engage in public discussion on related issues … and are careful consumers of scientific and technological information related to their everyday lives.” This article presents the results of a partnership that generated a new high school level curriculum and teacher professional development program that tackled the challenge of integrating hydrologic learning with computational thinking as applied to a real-world issue of flooding. CompHydro Baltimore produced Baltimore Floods, a six-lesson high school unit that builds students’ water literacy by engaging them in computational thinking (CT) and modeling practices as they learn about water system processes involved in urban flooding (See Computational Thinking and Associated Science Practices). CompHydro demonstrates that broad partnerships can address these challenges, bringing together the diverse expertise necessary to develop innovative CT-infused science curriculum materials and the teacher supports needed for successful implementation.  more » « less
Award ID(s):
1637661
PAR ID:
10251531
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Connected science learning
Volume:
3
Issue:
2
ISSN:
2475-8779
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. There is a growing movement seeking to promote Computer Science (CS) and Computational Thinking (CT) across K-8 education. While advantageous for supporting student learning through engaging in complex and interdisciplinary learning, integrating CS/CT into the elementary school curriculum can pose curricular and pedagogical challenges. For one, teachers themselves must understand the concepts and disciplinary practices associated with CS/CT and the other content areas being integrated, as well as develop a related pedagogical repertoire. This study addresses how two 3rd grade teachers made sense of the intersection of disciplinary practices and pedagogical practices to support student learning. We present preliminary findings from a Research-Practice Partnership that worked with elementary teachers to integrate aspects of CS/CT practice into existing content areas. We identified two main disciplinary activities that drove their curriculum design and pedagogical practices: (1) the importance of productive frustration and failure; and (2) the importance of precision 
    more » « less
  2. Kong, S.C. (Ed.)
    This work aims to help high school STEM teachers integrate computational thinking (CT) into their classrooms by engaging teachers as curriculum co-designers. K-12 teachers who are not trained in computer science may not see the value of CT in STEM classrooms and how to engage their students in computational practices that reflect the practices of STEM professionals. To this end, we developed a 4-week professional development workshop for eight science and mathematics high school teachers to co-design computationally enhanced curriculum with our team of researchers. The workshop first provided an introduction to computational practices and tools for STEM education. Then, teachers engaged in co-design to enhance their science and mathematics curricula with computational practices in STEM. Data from surveys and interviews showed that teachers learned about computational thinking, computational tools, coding, and the value of collaboration after the professional development. Further, they were able to integrate multiple computational tools that engage their students in CT-STEM practices. These findings suggest that teachers can learn to use computational practices and tools through workshops, and that teachers collaborating with researchers in co-design to develop computational enhanced STEM curriculum may be a powerful way to engage students and teachers with CT in K-12 classrooms. 
    more » « less
  3. The purpose of this research was to study the experiences of middle-school teachers of autistic students during the co-design of neurodiverse pedagogies for computational thinking (CT) within the context of a research practitioner partnership (RPP). This knowledge building partnership was founded on the neurodiversity paradigm and challenges the assumption that individuals with disabilities are exceptions for which accommodations must be made. Neurodiversity, here, is viewed as the natural variation of neurological differences and as such is proposed to be the baseline in every educational setting (Silberman, 2016; Walker, n.d.). When neurodiversity is seen as a baseline for an educational community, the focus is on educating diverse (whole) individuals rather than planning and teaching a standard computational thinking curriculum, while adding accommodations or adaptations to meet the needs of individual students. Our paper presents the results from a critical event analysis using qualitative data collected during the first year of a three-year mixed methods study, which includes teacher workshop mini-interviews and teacher embodied interviews. In this study, we ask: How do teachers experience the co-designing of neurodiverse pedagogies for computational thinking in a research practitioner partnership? And, how do these teachers modify and diversify their teaching practices of CT? 
    more » « less
  4. null (Ed.)
    While the Next Generation Science Standards set an expectation for developing computer science and computational thinking (CT) practices in the context of science subjects, it is an open question as to how to create curriculum and assessments that develop and measure these practices. In this poster, we show one possible solution to this problem: to introduce students to computer science through infusing computational thinking practices ("CT-ifying") science classrooms. To address this gap, our group has worked to explicitly characterize core CT-STEM practices as specific learning objectives and we use these to guide our development of science curriculum and assessments. However, having these learning objectives in mind is not enough to actually create activities that engage students in CT practices. We have developed along with science teachers, a strategy of examining a teacher’s existing curricula and identifying potential activities and concepts to “CT-ify”, rather than creating entirely new curricula from scratch by using the concept of scale as an “attack vector” to design science units that integrate computational thinking practices into traditional science curricula. We demonstrate how we conceptualize four different versions of scale in science, 1. Time, 2. Size, 3. Number, and 4. Repeatability. We also present examples of these concepts in traditional high school science curricula that hundreds of students in a large urban US school district have used. 
    more » « less
  5. Computational Thinking (CT) can play a central role in fostering students' integrated learning of science and engineering. We adopt this framework to design and develop the Water Runoff Challenge (WRC) curriculum for lower middle school students in the USA. This paper presents (1) the WRC curriculum implemented in an integrated computational modeling and engineering design environment and (2) formative and summative assessments used to evaluate learner’s science, engineering, and CT skills as they progress through the curriculum. We derived a series of performance measures associated with student learning from system log data and the assessments. By applying Path Analysis we found significant relations between measures of science, engineering, and CT learning, indicating that they are mutually supportive of learning across these disciplines. 
    more » « less