Abstract Members of the phylum Acidobacteriota inhabit a wide range of ecosystems including soils. We analyzed the global patterns of distribution and habitat preferences of various Acidobacteriota lineages across major ecosystems (soil, engineered, host-associated, marine, non-marine saline and alkaline, and terrestrial non-soil ecosystem) in 248,559 publicly available metagenomic datasets. Classes Terriglobia, Vicinamibacteria, Blastocatellia, and Thermoanaerobaculia were highly ubiquitous and showed clear preference to soil over non-soil habitats, class Polarisedimenticolia showed comparable ubiquity and preference between soil and non-soil habitats, while classes Aminicenantia and Holophagae showed preferences to non-soil habitats. However, while specific preferences were observed, most Acidobacteriota lineages were habitat generalists rather than specialists, with genomic and/or metagenomic fragments recovered from soil and non-soil habitats at various levels of taxonomic resolution. Comparative analysis of 1930 genomes strongly indicates that phylogenetic affiliation plays a more important role than the habitat from which the genome was recovered in shaping the genomic characteristics and metabolic capacities of theAcidobacteriota. The observed lack of strong habitat specialization and habitat transition driven lineage evolution in the Acidobacteriota suggest ready cross colonization between soil and non-soil habitats. We posit that such capacity is key to the successful establishment of Acidobacteriota as a major component in soil microbiomes post ecosystem disturbance events or during pedogenesis.
more »
« less
This content will become publicly available on January 29, 2026
An ecological-evolutionary perspective on the genomic diversity and habitat preferences of the Acidobacteriota
Members of the phylumAcidobacteriotainhabit a wide range of ecosystems including soils. We analysed the global patterns of distribution and habitat preferences of variousAcidobacteriotalineages across major ecosystems (soil, engineered, host-associated, marine, non-marine saline and alkaline and terrestrial non-soil ecosystems) in 248 559 publicly available metagenomic datasets. ClassesTerriglobia,Vicinamibacteria,BlastocatelliaandThermoanaerobaculiawere highly ubiquitous and showed a clear preference to soil over non-soil habitats, while classesAminicenantiaandHolophagaeshowed preferences to non-soil habitats. However, while specific preferences were observed, mostAcidobacteriotalineages were habitat generalists rather than specialists, with genomic and/or metagenomic fragments recovered from soil and non-soil habitats at various levels of taxonomic resolution. Comparative analysis of 1930 genomes strongly indicates that phylogenetic affiliation plays a more important role than the habitat from which the genome was recovered in shaping the genomic characteristics and metabolic capacities of theAcidobacteriota. The observed lack of strong habitat specialization and habitat-transition-driven lineage evolution in theAcidobacteriotasuggest ready cross-colonization between soil and non-soil habitats. We posit that such capacity is key to the successful establishment ofAcidobacteriotaas a major component in soil microbiomes post-ecosystem disturbance events or during pedogenesis.
more »
« less
- Award ID(s):
- 2016423
- PAR ID:
- 10613691
- Publisher / Repository:
- Microbiology Society
- Date Published:
- Journal Name:
- Microbial Genomics
- Volume:
- 11
- Issue:
- 1
- ISSN:
- 2057-5858
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Hydrogenotrophic methanogens are ubiquitous chemoautotrophic archaea inhabiting globally distributed deep-sea hydrothermal vent ecosystems and associated subseafloor niches within the rocky subseafloor, yet little is known about how they adapt and diversify in these habitats. To determine genomic variation and selection pressure within methanogenic populations at vents, we examined five Methanothermococcus single cell amplified genomes (SAGs) in conjunction with 15 metagenomes and 10 metatranscriptomes from venting fluids at two geochemically distinct hydrothermal vent fields on the Mid-Cayman Rise in the Caribbean Sea. We observed that some Methanothermococcus lineages and their transcripts were more abundant than others in individual vent sites, indicating differential fitness among lineages. The relative abundances of lineages represented by SAGs in each of the samples matched phylogenetic relationships based on single-copy universal genes, and genes related to nitrogen fixation and the CRISPR/Cas immune system were among those differentiating the clades. Lineages possessing these genes were less abundant than those missing that genomic region. Overall, patterns in nucleotide variation indicated that the population dynamics of Methanothermococcus were not governed by clonal expansions or selective sweeps, at least in the habitats and sampling times included in this study. Together, our results show that although specific lineages of Methanothermococcus co-exist in these habitats, some outcompete others, and possession of accessory metabolic functions does not necessarily provide a fitness advantage in these habitats in all conditions. This work highlights the power of combining single-cell, metagenomic, and metatranscriptomic datasets to determine how evolution shapes microbial abundance and diversity in hydrothermal vent ecosystems.more » « less
-
Synopsis Understanding the processes that shaped the distribution of species richness across the Tree of Life is a central macroevolutionary research agenda. Major ecological innovations, including transitions between habitats, may help to explain the striking asymmetries of diversity that are often observed between sister clades. Here, we test the impact of such transitions on speciation rates across decapod crustaceans, modeling diversification dynamics within a phylogenetic framework. Our results show that, while terrestrial lineages have higher speciation rates than either marine or freshwater lineages, there is no difference between mean speciation rates in marine and freshwater lineages across Decapoda. Partitioning our data by infraorder reveals that those clades with habitat heterogeneity have higher speciation rates in freshwater and terrestrial lineages, with freshwater rates up to 1.5 times faster than marine rates, and terrestrial rates approximately four times faster. This averaging out of marine and freshwater speciation rates results from the varying contributions of different clades to average speciation rates. However, with the exception of Caridea, we find no evidence for any causal relationship between habitat and speciation rate. Our results demonstrate that while statistical generalizations about ecological traits and evolutionary rates are valuable, there are many exceptions. Hence, while freshwater and terrestrial lineages typically speciate faster than their marine relatives, there are many atypically slow freshwater lineages and fast marine lineages across Decapoda. Future work on diversification patterns will benefit from the inclusion of fossil data, as well as additional ecological factors.more » « less
-
Abstract Ammonia-oxidizing archaea (AOA) are among the most abundant and ubiquitous microorganisms in the ocean, exerting primary control on nitrification and nitrogen oxides emission. Although united by a common physiology of chemoautotrophic growth on ammonia, a corresponding high genomic and habitat variability suggests tremendous adaptive capacity. Here, we compared 44 diverse AOA genomes, 37 from species cultivated from samples collected across diverse geographic locations and seven assembled from metagenomic sequences from the mesopelagic to hadopelagic zones of the deep ocean. Comparative analysis identified seven major marine AOA genotypic groups having gene content correlated with their distinctive biogeographies. Phosphorus and ammonia availabilities as well as hydrostatic pressure were identified as selective forces driving marine AOA genotypic and gene content variability in different oceanic regions. Notably, AOA methylphosphonate biosynthetic genes span diverse oceanic provinces, reinforcing their importance for methane production in the ocean. Together, our combined comparative physiological, genomic, and metagenomic analyses provide a comprehensive view of the biogeography of globally abundant AOA and their adaptive radiation into a vast range of marine and terrestrial habitats.more » « less
-
The bacterial orderMagnimaribacterales, previously known as the SAR86 lineage, is among the most abundant groups of planktonic bacteria inhabiting the global surface ocean. Despite their prevalence, our understanding of how this genetically diverse lineage partitions into units with coherent ecology and evolution remains limited. Here we surveyed multiple stations in the tropical Pacific Ocean using shotgun metagenomes and 16S rRNA gene amplicons to resolve distinct habitat preferences forMagnimaribacteraleslineages across nearshore, offshore, and open-ocean environments. The comprehensive collection of genomes that captured a large fraction of the known evolutionary breadth ofMagnimaribacterales, revealed patterns of ecotypic differentiation manifested primarily among genus-level clusters with specific clear preferences for distinct marine habitats. Enrichment analyses identified several functional genes associated with genomes from genera abundant in the nearshore environment, including those associated with sugar metabolism, peptide transport, and glycerophospholipid biosynthesis. Such metabolic adaptations likely facilitate the predominance of specificMagnimaribacteralesgenera in nearshore environments, promoting ecological partitioning across marine habitats.more » « less
An official website of the United States government
