Abstract Datta and Johnsen (Des Codes Cryptogr 91:747–761, 2023) introduced a new family of evaluation codes in an affine space of dimension$$\ge 2$$ over a finite field$${\mathbb {F}}_q$$ where linear combinations of elementary symmetric polynomials are evaluated on the set of all points with pairwise distinct coordinates. In this paper, we propose a generalization by taking low dimensional linear systems of symmetric polynomials. Computation for small values of$$q=7,9$$ shows that carefully chosen generalized Datta–Johnsen codes$$\left[ \frac{1}{2}q(q-1),3,d\right] $$ have minimum distancedequal to the optimal value minus 1.
more »
« less
Error analysis for the implicit boundary integral method
Abstract The implicit boundary integral method (IBIM) provides a framework to construct quadrature rules on regular lattices for integrals over irregular domain boundaries. This work provides a systematic error analysis for IBIMs on uniform Cartesian grids for boundaries with different degrees of regularity. First, it is shown that the quadrature error gains an additional order of$$\frac{d-1}{2}$$ from the curvature for a strongly convex smooth boundary due to the “randomness” in the signed distances. This gain is discounted for degenerated convex surfaces. Then the extension of error estimate to general boundaries under some special circumstances is considered, including how quadrature error depends on the boundary’s local geometry relative to the underlying grid. Bounds on the variance of the quadrature error under random shifts and rotations of the lattices are also derived.
more »
« less
- PAR ID:
- 10613796
- Publisher / Repository:
- Springer
- Date Published:
- Journal Name:
- BIT Numerical Mathematics
- Volume:
- 65
- Issue:
- 1
- ISSN:
- 0006-3835
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Assuming the Riemann Hypothesis, we study negative moments of the Riemann zeta-function and obtain asymptotic formulas in certain ranges of the shift in {\zeta(s)}. For example, integrating {|\zeta(\frac{1}{2}+\alpha+it)|^{-2k}}with respect totfromTto {2T}, we obtain an asymptotic formula when the shift α is roughly bigger than {\frac{1}{\log T}}and {k<\frac{1}{2}}. We also obtain non-trivial upper bounds for much smaller shifts, as long as {\log\frac{1}{\alpha}\ll\log\log T}. This provides partial progress towards a conjecture of Gonek on negative moments of the Riemann zeta-function, and settles the conjecture in certain ranges. As an application, we also obtain an upper bound for the average of the generalized Möbius function.more » « less
-
Abstract Let$$\mathbb {F}_q^d$$ be thed-dimensional vector space over the finite field withqelements. For a subset$$E\subseteq \mathbb {F}_q^d$$ and a fixed nonzero$$t\in \mathbb {F}_q$$ , let$$\mathcal {H}_t(E)=\{h_y: y\in E\}$$ , where$$h_y:E\rightarrow \{0,1\}$$ is the indicator function of the set$$\{x\in E: x\cdot y=t\}$$ . Two of the authors, with Maxwell Sun, showed in the case$$d=3$$ that if$$|E|\ge Cq^{\frac{11}{4}}$$ andqis sufficiently large, then the VC-dimension of$$\mathcal {H}_t(E)$$ is 3. In this paper, we generalize the result to arbitrary dimension by showing that the VC-dimension of$$\mathcal {H}_t(E)$$ isdwhenever$$E\subseteq \mathbb {F}_q^d$$ with$$|E|\ge C_d q^{d-\frac{1}{d-1}}$$ .more » « less
-
Abstract Consider two half-spaces$$H_1^+$$ and$$H_2^+$$ in$${\mathbb {R}}^{d+1}$$ whose bounding hyperplanes$$H_1$$ and$$H_2$$ are orthogonal and pass through the origin. The intersection$${\mathbb {S}}_{2,+}^d:={\mathbb {S}}^d\cap H_1^+\cap H_2^+$$ is a spherical convex subset of thed-dimensional unit sphere$${\mathbb {S}}^d$$ , which contains a great subsphere of dimension$$d-2$$ and is called a spherical wedge. Choosenindependent random points uniformly at random on$${\mathbb {S}}_{2,+}^d$$ and consider the expected facet number of the spherical convex hull of these points. It is shown that, up to terms of lower order, this expectation grows like a constant multiple of$$\log n$$ . A similar behaviour is obtained for the expected facet number of a homogeneous Poisson point process on$${\mathbb {S}}_{2,+}^d$$ . The result is compared to the corresponding behaviour of classical Euclidean random polytopes and of spherical random polytopes on a half-sphere.more » « less
-
AbstractWe develop a two-timing perturbation analysis to provide quantitative insights on the existence of temporal ratchets in an exemplary system of a particle moving in a tank of fluid in response to an external vibration of the tank. We consider two-mode vibrations with angular frequencies$$\omega $$ and$$\alpha \omega $$ , where$$\alpha $$ is a rational number. If$$\alpha $$ is a ratio of odd and even integers (e.g.,$$\tfrac{2}{1},\,\tfrac{3}{2},\,\tfrac{4}{3}$$ ), the system yields a net response: here, a nonzero time-average particle velocity. Our first-order perturbation solution predicts the existence of temporal ratchets for$$\alpha =2$$ . Furthermore, we demonstrate, for a reduced model, that the temporal ratcheting effect for$$\alpha =\tfrac{3}{2}$$ and$$\tfrac{4}{3}$$ appears at the third-order perturbation solution. More importantly, we find closed-form formulas for the magnitude and direction of the induced net velocities for these$$\alpha $$ values. On a broader scale, our methodology offers a new mathematical approach to study the complicated nature of temporal ratchets in physical systems. Graphic abstractmore » « less
An official website of the United States government

