skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 29, 2026

Title: The differential transpiration response of plants to stress
An increase in the frequency and intensity of heat waves, floods, droughts and other environmental stresses, resulting from climate change, is threatening agricultural food production worldwide. Heat waves are especially problematic to grain yields, as the reproductive processes of almost all our main grain crops are highly sensitive to heat. At times, heat waves can occur together with drought, high ozone levels, pathogen infection and/or waterlogging stress that suppress the overall process of plant cooling by transpiration. We recently reported that under conditions of heat and water-deficit stress combination, the stomata on sepals and pods of soybean (Glycine max) remain open, while the stomata on leaves close. This process, termed ‘differential transpiration’, enabled the cooling of reproductive organs, while leaf temperature increased owing to suppressed transpiration. In this review article, we focus on the impacts on crops of heat waves occurring in isolation and of heat waves combined with drought or waterlogging stress, address the main processes impacted in plants by these stresses and discuss ways to mitigate the negative effects of isolated heat waves and of heat waves that occur together with other stresses (i.e. stress combination), on crops, with a focus on the process of differential transpiration. This article is part of the theme issue ‘Crops under stress: can we mitigate the impacts of climate change on agriculture and launch the ‘Resilience Revolution’?’.  more » « less
Award ID(s):
2414183
PAR ID:
10613829
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Philos Trans R Soc Lond B Biol Sci.
Date Published:
Journal Name:
Philosophical Transactions of the Royal Society B: Biological Sciences
Volume:
380
Issue:
1927
ISSN:
0962-8436
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary Heat waves occurring during droughts can have a devastating impact on yield, especially if they happen during the flowering and seed set stages of the crop cycle. Global warming and climate change are driving an alarming increase in the frequency and intensity of combined drought and heat stress episodes, critically threatening global food security.Because high temperature is detrimental to reproductive processes, essential for plant yield, we measured the inner temperature, transpiration, sepal stomatal aperture, hormone concentrations and transcriptomic response of closed soybean flowers developing on plants subjected to a combination of drought and heat stress.Here, we report that, during a combination of drought and heat stress, soybean plants prioritize transpiration through flowers over transpiration through leaves by opening their flower stomata, while keeping their leaf stomata closed. This acclimation strategy, termed ‘differential transpiration’, lowers flower inner temperature by about 2–3°C, protecting reproductive processes at the expense of vegetative tissues.Manipulating stomatal regulation, stomatal size and/or stomatal density of flowers could serve as a viable strategy to enhance the yield of different crops and mitigate some of the current and future impacts of global warming and climate change on agriculture. 
    more » « less
  2. Abstract Climate change is causing an increase in the frequency and intensity of droughts, heat waves, and their combinations, diminishing agricultural productivity and destabilizing societies worldwide. We recently reported that during a combination of water deficit (WD) and heat stress (HS), stomata on leaves of soybean (Glycine max) plants are closed, while stomata on flowers are open. This unique stomatal response was accompanied by differential transpiration (higher in flowers, while lower in leaves) that cooled flowers during a combination of WD + HS. Here, we reveal that developing pods of soybean plants subjected to a combination of WD + HS use a similar acclimation strategy of differential transpiration to reduce internal pod temperature by approximately 4 °C. We further show that enhanced expression of transcripts involved in abscisic acid degradation accompanies this response and that preventing pod transpiration by sealing stomata causes a significant increase in internal pod temperature. Using an RNA-Seq analysis of pods developing on plants subjected to WD + HS, we also show that the response of pods to WD, HS, or WD + HS is distinct from that of leaves or flowers. Interestingly, we report that although the number of flowers, pods, and seeds per plant decreases under conditions of WD + HS, the seed mass of plants subjected to WD + HS increases compared to plants subjected to HS, and the number of seeds with suppressed/aborted development is lower in WD + HS compared to HS. Taken together, our findings reveal that differential transpiration occurs in pods of soybean plants subjected to WD + HS and that this process limits heat-induced damage to seed production. 
    more » « less
  3. Abstract. Irrigation has important implications for sustaining global food production by enabling crop water demand to be met even under dry conditions.Added water also cools crop plants through transpiration; irrigation mightthus play an important role in a warmer climate by simultaneously moderating water and high temperature stresses. Here we used satellite-derived evapotranspiration estimates, land surface temperature (LST) measurements, and crop phenological stage information from Nebraska maize to quantify how irrigation relieves both water and temperature stresses. Unlike air temperature metrics, satellite-derived LST revealed a significant irrigation-induced cooling effect, especially during the grain filling period (GFP) of crop growth. This cooling appeared to extend the maize growing season, especially for GFP, likely due to the stronger temperature sensitivity of phenological development during this stage. Our analysis also revealed that irrigation not only reduced water and temperature stress but also weakened the response of yield to these stresses. Specifically, temperature stress was significantly weakened for reproductive processes in irrigated maize. Attribution analysis further suggested that water and high temperature stress alleviation was responsible for 65±10 % and 35±5.3 % of the irrigation yield benefit, respectively. Our study underlines the relative importance of high temperature stress alleviation in yield improvement and the necessity of simulating crop surface temperature to better quantify heat stress effects in crop yield models. Finally, considering the potentially strong interaction between water and heat stress, future research on irrigation benefits should explore the interaction effects between heat and drought alleviation. 
    more » « less
  4. Differential transpiration is a newly discovered acclimation strategy of annual plants that mitigates the negative impacts of combined water deficit (WD) and heat stress (HS) on plant reproduction. Under conditions of WD + HS, transpiration of vegetative tissues is suppressed in plants such as soybean and tomato, while transpiration of reproductive tissues is not (termed ‘Differential Transpiration’; DT). This newly identified acclimation process enables the cooling of reproductive organs under conditions of WD + HS, limiting HS‐induced damage to plant reproduction. However, the thresholds at which DT remains active and effectively cools reproductive tissues, as well as the developmental stages at which it is activated in soybean, remain unknown. Here, we report that DT occurs at most nodes (leaf developmental stages) of soybean plants subjected to WD + HS, and that it can function under extreme conditions of WD + HS (i.e.,18% of field water capacity and 42°C combined). Our findings reveal that DT is an effective acclimation strategy that protects reproductive processes from extreme conditions of WD + HS at almost all developmental stages. In addition, our findings suggest that, under field conditions, DT could also be active in plants subjected to low or mild levels of WD during a heat wave. 
    more » « less
  5. Abiotic stresses such as drought, heat, cold, salinity and flooding significantly impact plant growth, development and productivity. As the planet has warmed, these abiotic stresses have increased in frequency and intensity, affecting the global food supply and making it imperative to develop stress-resilient crops. In the past 20 years, the development of omics technologies has contributed to the growth of datasets for plants grown under a wide range of abiotic environments. Integration of these rapidly growing data using machine-learning (ML) approaches can complement existing breeding efforts by providing insights into the mechanisms underlying plant responses to stressful conditions, which can be used to guide the design of resilient crops. In this review, we introduce ML approaches and provide examples of how researchers use these approaches to predict molecular activities, gene functions and genotype responses under stressful conditions. Finally, we consider the potential and challenges of using such approaches to enable the design of crops that are better suited to a changing environment. This article is part of the theme issue ‘Crops under stress: can we mitigate the impacts of climate change on agriculture and launch the ‘Resilience Revolution’?’. 
    more » « less