skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Untangling irrigation effects on maize water and heat stress alleviation using satellite data
Abstract. Irrigation has important implications for sustaining global food production by enabling crop water demand to be met even under dry conditions.Added water also cools crop plants through transpiration; irrigation mightthus play an important role in a warmer climate by simultaneously moderating water and high temperature stresses. Here we used satellite-derived evapotranspiration estimates, land surface temperature (LST) measurements, and crop phenological stage information from Nebraska maize to quantify how irrigation relieves both water and temperature stresses. Unlike air temperature metrics, satellite-derived LST revealed a significant irrigation-induced cooling effect, especially during the grain filling period (GFP) of crop growth. This cooling appeared to extend the maize growing season, especially for GFP, likely due to the stronger temperature sensitivity of phenological development during this stage. Our analysis also revealed that irrigation not only reduced water and temperature stress but also weakened the response of yield to these stresses. Specifically, temperature stress was significantly weakened for reproductive processes in irrigated maize. Attribution analysis further suggested that water and high temperature stress alleviation was responsible for 65±10 % and 35±5.3 % of the irrigation yield benefit, respectively. Our study underlines the relative importance of high temperature stress alleviation in yield improvement and the necessity of simulating crop surface temperature to better quantify heat stress effects in crop yield models. Finally, considering the potentially strong interaction between water and heat stress, future research on irrigation benefits should explore the interaction effects between heat and drought alleviation.  more » « less
Award ID(s):
1639318
PAR ID:
10423091
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Hydrology and Earth System Sciences
Volume:
26
Issue:
3
ISSN:
1607-7938
Page Range / eLocation ID:
827 to 840
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Irrigation is an important adaptation to reduce crop yield loss due to water stress from both soil water deficit (low soil moisture) and atmospheric aridity (high vapor pressure deficit, VPD). Traditionally, irrigation has primarily focused on soil water deficit. Observational evidence demonstrates that stomatal conductance is co-regulated by soil moisture and VPD from water supply and demand aspects. Here we use a validated hydraulically-driven ecosystem model to reproduce the co-regulation pattern. Specifically, we propose a plant-centric irrigation scheme considering water supply-demand dynamics (SDD), and compare it with soil-moisture-based irrigation scheme (management allowable depletion, MAD) for continuous maize cropping systems in Nebraska, United States. We find that, under current climate conditions, the plant-centric SDD irrigation scheme combining soil moisture and VPD, could significantly reduce irrigation water use (−24.0%) while maintaining crop yields, and increase economic profits (+11.2%) and irrigation water productivity (+25.2%) compared with MAD, thus SDD could significantly improve water sustainability. 
    more » « less
  2. Abstract Correctly calculating the timing and amount of crop irrigation is crucial for capturing irrigation effects on surface water and energy budgets and land‐atmosphere interactions. This study incorporated a dynamic irrigation scheme into the Noah with multiparameterization land surface model and investigated three methods of determining crop growing season length by agriculture management data. The irrigation scheme was assessed at field scales using observations from two contrasting (irrigated and rainfed) AmeriFlux sites near Mead, Nebraska. Results show that crop‐specific growing‐season length helped capture the first application timing and total irrigation amount, especially for soybeans. With a calibrated soil‐moisture triggering threshold (IRR_CRI), using planting and harvesting dates alone could reasonably predict the first application for maize. For soybeans, additional constraints on growing season were required to correct an early bias in the first modeled application. Realistic leaf area index input was essential for identifying the leaf area index‐based growing season. When transitioning from field to regional scales, the county‐level calibrated IRR_CRI helped mitigate overestimated (underestimated) total irrigation amount in southeastern Nebraska (lower Mississippi River Basin). In these two heavily irrigated regions, irrigation produced a cooling effect of 0.8–1.4 K, a moistening effect of 1.2–2.4 g/kg, a reduction in sensible heat flux by 60–105 W/m2, and an increase in latent heat flux by 75–120 W/m2. Most of irrigation water was used to increase soil moisture and evaporation, rather than runoff. Lacking regional‐scale irrigation timing and crop‐specific parameters makes transferring the evaluation and parameter‐constraint methods from field to regional scales difficult. 
    more » « less
  3. Abstract Warm temperatures due to increases of greenhouse gas emissions have changed temperature distribution patterns especially for their extremes, which negatively affect crop yields. However, the assessment of these negative impacts remains unclear when surface precipitation patterns are shifted. Using a statistical model along with 23,944 county-year maize-yield data during 1981–2020 in the US Corn Belt, we found that the occurrence of timely precipitation reduced the sensitivity of maize yields to extreme heat by an average of 20% during the growing season with variations across phenological periods. Spatially across the US corn belt, maize in the northern region exhibited more significant benefits from timely precipitation compared to the southern region, despite the pronounced negative effects of extreme heat on yields in cooler regions. This study underscores the necessity of incorporating timely precipitation as a pivotal factor in estimating heat effects under evolving climates, offering valuable insights into complex climate-related challenges. 
    more » « less
  4. Detecting crop phenology with satellite time series is important to characterize agroecosystem energy-water-carbon fluxes, manage farming practices, and predict crop yields. Despite the advances in satellite-based crop phenological retrievals, interpreting those retrieval characteristics in the context of on-the-ground crop phenological events remains a long-standing hurdle. Over the recent years, the emergence of near-surface phenology cameras (e.g., PhenoCams), along with the satellite imagery of both high spatial and temporal resolutions (e.g., PlanetScope imagery), has largely facilitated direct comparisons of retrieved characteristics to visually observed crop stages for phenological interpretation and validation. The goal of this study is to systematically assess near-surface PhenoCams and high-resolution PlanetScope time series in reconciling sensor- and ground-based crop phenological characterizations. With two critical crop stages (i.e., crop emergence and maturity stages) as an example, we retrieved diverse phenological characteristics from both PhenoCam and PlanetScope imagery for a range of agricultural sites across the United States. The results showed that the curvature-based Greenup and Gu-based Upturn estimates showed good congruence with the visually observed crop emergence stage (RMSE about 1 week, bias about 0–9 days, and R square about 0.65–0.75). The threshold- and derivative-based End of greenness falling Season (i.e., EOS) estimates reconciled well with visual crop maturity observations (RMSE about 5–10 days, bias about 0–8 days, and R square about 0.6–0.75). The concordance among PlanetScope, PhenoCam, and visual phenology demonstrated the potential to interpret the fine-scale sensor-derived phenological characteristics in the context of physiologically well-characterized crop phenological events, which paved the way to develop formal protocols for bridging ground-satellite phenological characterization. 
    more » « less
  5. Abstract Irrigation plays a crucial role in agricultural production across the U.S. Great Plains. Meanwhile, it is a key driver of local and regional climate due to its influence on energy and water exchange between land surface and atmosphere. Despite the irrigation-induced evaporative cooling on temperature alone, how irrigation affects summer heat stress – a combination of temperature and humidity can become a concern to public health concern – is not well understood. This study examines the potential impacts of irrigation practices on summer temperature and heat extremes in the Great Plains using a set of sensitivity experiments conducted with the Weather Research & Forecasting (WRF) model for 10 growing seasons. Results show that intensive irrigation lowers the atmospheric temperature, but the increased humidity from enhanced evapotranspiration, especially during the extreme hot and dry summers, can possibly elevate the risks of heat stress in the heavily irrigated area and its surroundings. The response of humid heat extremes to irrigation depends on the heat metrics used in the assessment. For variables like wet-bulb temperature, wet-bulb globe temperature, and equivalent temperature, irrigation leads to significantly intensified humid heat extremes by up to 5°C and increased heatwave frequency by 3 events year-1. In contrast, metrics like the heat index and environmental stress index suggest that irrigation mitigates heat intensity by decreasing the temperature metrics by up to 1°C. Given the importance of irrigation in Great Plains agriculture in a changing climate, these uncertainties underscore the urgent need to connect heat metrics with health outcomes to better address heat mitigation in rural communities. 
    more » « less