Auxetic (negative Poisson’s ratio) structures made from rotating squares have attracted considerable attention due to their tunable shape control, strength, and strain energy absorption capacity. The present study aims to explore the interrelations between mesoscale kinematics and the macroscopic mechanical behavior of additively manufactured rotating-square auxetics under compressive loads. Specifically, correlations between the rotational degree of freedom of the squares, mechanical deformation of the cell hinges, and the macroscopic nonlinear mechanical and Poisson’s behaviors are investigated using experimental measurements supplemented by mathematical models. Structures with variable cell hinge thicknesses are fabricated by stereolithography additive manufacturing technique and then subjected to compressive loads applied at quasi-static and dynamic conditions with several orders of magnitude difference in strain rate. Multiscale mechanical deformation of the structure in each case is analyzed using digital image correlation (DIC). Experimental characterizations indicate strongly nonlinear and rate-sensitive auxetic behaviors in the examined structures. The role of cell hinge thickness is discussed in terms of the mechanical constraint that these components impose on the rotational degree of freedom of the solid squares in the structure, concurrently causing a nonlinear strain hardening behavior.
more »
« less
This content will become publicly available on January 1, 2026
Strain rate sensitivity of rotating-square auxetic metamaterials
This study provides an in-depth analysis of the mechanical behavior of rotating-square auxetic structures under various strain rates. The structures are fabricated using stereolithography additive manufacturing with a flexible resin. Mechanical tests performed on structures include quasi-static, intermediate, and high strain rate compression tests, supplemented by high-speed optical imaging and two-dimensional digital image correlation analyses. In quasi-static conditions (5 × 10–3 s-1), multiscale measurements reveal the correlation between local and global strains. It is shown that cell hinges play a significant role in structural deformation and load-bearing capacity. In drop tower impact conditions (intermediate strain rate of ca. 200 s-1), the auxetic structures display significant strain rate hardening compared to loading at quasi-static rates. The thin-hinge structures maintain a Poisson's ratio of approximately -0.8, showing higher auxeticity than slow-rate compression tests. High strain rate conditions (ca. 2000s-1) activate additional deformation mechanisms, including a delayed state of equilibrium exemplified by a heterogeneous distribution of lateral strains, possibly due to stress wave interactions and inertial stresses. The study further reveals nonlinear correlations between Poisson's ratio, strain, and strain rate, indicating reduced auxeticity at higher strain rates. These observations are discussed in terms of complex wave interactions and the strain rate hardening characteristics of the base polymer.
more »
« less
- Award ID(s):
- 2035660
- PAR ID:
- 10613838
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- International Journal of Impact Engineering
- Volume:
- 195
- Issue:
- C
- ISSN:
- 0734-743X
- Page Range / eLocation ID:
- 105128
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This investigation explores novel two‐phase chevron mechanical metamaterials that exhibit auxetic properties. Unlike traditional foam‐like cellular or porous auxetic materials, these designs are composed of chevron patterned layers embedded in anisotropic matrix. This innovation design allows for auxeticity in two orthogonal in‐plane directions (bi‐auxeticity) or in all in‐plane directions (complete auxeticity), providing not only a general strategy but also detailed guidelines for designing non‐porous auxetic mechanical metamaterials with tunable auxetic behaviors. One goal of this work is to explore the mechanical behavior, specifically effective stiffness and Poisson's ratio, of these new designs and to identify the design space for auxetic behavior using numerical and experimental methods. Systematic finite element (FE) simulations are conducted using ABAQUS and Python scripts to quantify effective stiffness and Poisson's ratio within a small strain range. To validate the numerical predictions, three representative designs are selected and fabricated via multi‐material polymer jetting. Uniaxial tension experiments are conducted on these specimens. Design spaces for non‐auxeticity, partial‐auxeticity, and complete auxeticity are identified through an integrated numerical approach. Theoretical criteria for determining the completeness of auxeticity are proposed and verified via FE simulations.more » « less
-
Composite laminates with negative Posson's ratios (i.e., auxetic composite laminates) were experimentally found to demonstrate a three-fold increase in buckling strength under uniaxial compression in comparison with the equivalent non-auxetic ones. To investigate whether the enhancement is genuinely due to the negative Poisson's ratio (i.e., the auxeticity) or merely caused by the concurrent change in the bending stiffness matrix as the composite layup changes, a novel monoclinic plate-based composite laminate approach is proposed, which for the first time, allows to isolate the auxeticity effect from the concurrent change of the stiffness matrix. Results provided theoretical proof that the auxeticity plays an active role in enhancing the critical buckling strength of layered composite structure. However, such a role is dynamically sensitive to elements in the bending stiffness matrix, especially the bending-twisting ratio and the anisotropy of the bending stiffness between the longitudinal and lateral directions. Insights are expected to provide guidance in exploiting negative Poisson's ratio for improving the stability of layered composite structures.more » « less
-
Auxetic mechanical metamaterials show significant potential to impact many engineering fields and have been a topic of considerable research interest in recent years. Existing literature on the topic often aims to achieve larger negative Poisson's ratios or tailorable responses by carefully designed and distributed unit cells. Herein, it is aimed to investigate the relationships between global and local strain fields in rectangular center‐symmetric perforated planar structures, thus highlighting the role of local morphology on the macroscopic material response. Additively manufactured samples with hyperelastic constitutive behavior are characterized under tension. The structures are designed and developed with several perforation aspect ratios, leading to various degrees of auxeticity. Global and local strain fields are characterized using a multiscale digital image correlation measurement approach. The local rotation and in‐plane strain fields generated within the solid portions of the unit cells are correlated with the global strain fields and macroscopic Poisson's ratios for a range of cell geometries. The interplay between cell rotation and strain at the meso (unit cell) scale is shown to be the dominant factor in the strain‐dependent evolution of the Poisson's ratio in the structures.more » « less
-
Abstract For artificial materials, desired properties often conflict. For example, engineering materials often achieve high energy dissipation by sacrificing resilience and vice versa, or desired auxeticity by losing their isotropy, which limits their performance and applications. To solve these conflicts, a strategy is proposed to create novel mechanical metamaterial via 3D space filling tiles with engaging key‐channel pairs, exemplified via auxetic 3D keyed‐octahedron–cuboctahedron metamaterials. This metamaterial shows high resilience while achieving large mechanical hysteresis synergistically under large compressive strain. Especially, this metamaterial exhibits ideal isotropy approaching the theoretical limit of isotropic Poisson's ratio, ‐1, as rarely seen in existing 3D mechanical metamaterials. In addition, the new class of metamaterials provides wide tunability on mechanical properties and behaviors, including an unusual coupled auxeticity and twisting behavior under normal compression. The designing methodology is illustrated by the integral of numerical modeling, theoretical analysis, and experimental characterization. The new mechanical metamaterials have broad applications in actuators and dampers, soft robotics, biomedical materials, and engineering materials/systems for energy dissipation.more » « less
An official website of the United States government
