Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract This study investigates the development of thermoplastic polyurethane (TPU) filaments incorporating multi‐walled carbon nanotubes (MWCNT) to enhance strain‐sensing capabilities. Various MWCNT reinforcement ratios are used to produce customized feedstock for fused filament fabrication (FFF) 3D printing. Mechanical properties and the piezoresistive response of samples printed with these multifunctional filaments are concurrently evaluated. Surface morphology and microstructural observations reveal that higher MWCNT weight percentages increase filament surface roughness and rigidity. The microstructural modifications directly influence the tensile strength and strain energy of the printed samples. The study identifies an apparent percolation threshold within the 10–12 wt.% MWCNT range, indicating the formation of a conductive network. At this threshold, higher gauge factors are achieved at lower strains. A newly introduced Electro‐Mechanical Sensitivity Ratio (ESR) parameter enables the classification of composite behaviors into two distinct zones, offering the ability to tailor self‐sensing structures with on‐demand properties. Finally, flexible structures with proven application in soft robotics and shape morphing are fabricated and tested at different loading conditions to demonstrate the potential applicability of the custom filaments produced. The results highlight a pronounced piezoresistive response and superior load‐bearing performance in the examined structures.more » « less
-
Abstract Zero Poisson’s ratio structures are a new class of mechanical metamaterials wherein the absence of lateral deformations allows the structure to adapt and conform their geometries to desired shapes with minimal interventions. These structures have gained attention in large deformation applications where shape control is a key performance attribute, with examples including but not limited to shape morphing, soft robotics, and flexible electronics. The present study introduces an experimentally driven approach that leads to the design and development of (near) zero Poisson’s ratio structures with considerable load-bearing capacities through concurrent density and architecture gradations in hybrid honeycombs created from hexagonal and re-entrant cells. The strain-dependent Poisson’s ratios in hexagonal and re-entrant honeycombs with various cell wall thicknesses have been characterized experimentally. A mathematical approach is then proposed and utilized to create hybrid structures wherein the spatial distribution of different cell shapes and densities leads to the development of honeycombs with minimal lateral deformations under compressive strains as high as 0.7. Although not considered design criteria, the load-bearing and energy absorption capacities of the hybrid structures are shown to be comparable with those of uniform cell counterparts. Finally, the new hybrid structures indicate lesser degrees of instability (in the form of cell buckling and collapse) due to the self-constraining effects imposed internally by the adjacent cell rows in the structures.more » « less
-
Auxetic (negative Poisson’s ratio) structures made from rotating squares have attracted considerable attention due to their tunable shape control, strength, and strain energy absorption capacity. The present study aims to explore the interrelations between mesoscale kinematics and the macroscopic mechanical behavior of additively manufactured rotating-square auxetics under compressive loads. Specifically, correlations between the rotational degree of freedom of the squares, mechanical deformation of the cell hinges, and the macroscopic nonlinear mechanical and Poisson’s behaviors are investigated using experimental measurements supplemented by mathematical models. Structures with variable cell hinge thicknesses are fabricated by stereolithography additive manufacturing technique and then subjected to compressive loads applied at quasi-static and dynamic conditions with several orders of magnitude difference in strain rate. Multiscale mechanical deformation of the structure in each case is analyzed using digital image correlation (DIC). Experimental characterizations indicate strongly nonlinear and rate-sensitive auxetic behaviors in the examined structures. The role of cell hinge thickness is discussed in terms of the mechanical constraint that these components impose on the rotational degree of freedom of the solid squares in the structure, concurrently causing a nonlinear strain hardening behavior.more » « lessFree, publicly-accessible full text available March 1, 2026
-
This study provides an in-depth analysis of the mechanical behavior of rotating-square auxetic structures under various strain rates. The structures are fabricated using stereolithography additive manufacturing with a flexible resin. Mechanical tests performed on structures include quasi-static, intermediate, and high strain rate compression tests, supplemented by high-speed optical imaging and two-dimensional digital image correlation analyses. In quasi-static conditions (5 × 10–3 s-1), multiscale measurements reveal the correlation between local and global strains. It is shown that cell hinges play a significant role in structural deformation and load-bearing capacity. In drop tower impact conditions (intermediate strain rate of ca. 200 s-1), the auxetic structures display significant strain rate hardening compared to loading at quasi-static rates. The thin-hinge structures maintain a Poisson's ratio of approximately -0.8, showing higher auxeticity than slow-rate compression tests. High strain rate conditions (ca. 2000s-1) activate additional deformation mechanisms, including a delayed state of equilibrium exemplified by a heterogeneous distribution of lateral strains, possibly due to stress wave interactions and inertial stresses. The study further reveals nonlinear correlations between Poisson's ratio, strain, and strain rate, indicating reduced auxeticity at higher strain rates. These observations are discussed in terms of complex wave interactions and the strain rate hardening characteristics of the base polymer.more » « lessFree, publicly-accessible full text available January 1, 2026
-
Midsoles are important components in footwear as they provide shock absorption and stability, thereby improving comfort and effectively preventing certain foot injuries. A strategically engineered midsole designed to mitigate plantar pressure can enhance athletic performance and comfort levels. Despite the importance of midsole design, the potential of using in-plane density gradation (deliberate variation of material density across the horizontal plane) in midsoles has been rarely explored. The present work investigated the effectiveness of in-plane density gradation in shoe midsoles using novel polyurea foams as the material candidate. Different polyurea foam densities, ranging from 95 to 350 kg/m2were examined and tested to construct density-dependent correlative mathematical relations required for optimizing the midsole design for enhanced cushioning and reduced weight. This study combined mechanical testing and plantar pressure measurements to validate the efficacy of density-graded midsoles. The methodology introduced here is relevant to realistic walking conditions, ensured by biomechanical tests supplemented by digital image correlation analyses. An optimization framework was then created to allocate foam densities at certain plantar zones based on the required cushioning performance constrained by the local pressure. The optimization algorithm was specifically tailored to accommodate varying local pressures experienced by different areas of the foot. The optimization strategy in this study aimed at reducing the overall weight of the midsole while ensuring there were no compromises in cushioning efficacy or distribution of plantar pressure. The approach presented herein has the potential to be applied to a wide range of gait speeds and user-specific plantar pressure patterns.more » « less
-
Density‐graded elastomeric foams are emerging as effective protective structures to guard humans against mechanical loading. This research investigates the deformation of ungraded and graded foams under quasistatic and impact scenarios using digital image correlation (DIC). The graded samples are assembled using two interfacing strategies (seamless and adhered), leveraging the adhesiveness of the foam slurry and bulk polyurea, respectively. Deformation mechanisms, including the effect of the interface type on strain transduction and localization in density‐graded structures, are imperative for improving the impact efficacy of protective paddings. Cuboid foam plugs are subjected to quasistatic and impact loading while recording the corresponding deformation for DIC analysis. The DIC results are separated into three case studies based on the number of layers (1, 2, and 3). The interface effect on the overall mechanical performance of polyurea foam is revealed from the bilayer, monodensity samples, showing drastic differences between the deformations within each layer. Seamless interface samples exhibit greater compliance than their adhered counterparts in the bilayer density‐graded configurations. Trilayer‐graded foams broaden strain–time history, extend the impact duration, and reduce strains. This research substantiates the importance of interfacing and gradation strategies on the mechanical response of elastomeric foams as a function of strain rate.more » « less
-
Auxetic mechanical metamaterials show significant potential to impact many engineering fields and have been a topic of considerable research interest in recent years. Existing literature on the topic often aims to achieve larger negative Poisson's ratios or tailorable responses by carefully designed and distributed unit cells. Herein, it is aimed to investigate the relationships between global and local strain fields in rectangular center‐symmetric perforated planar structures, thus highlighting the role of local morphology on the macroscopic material response. Additively manufactured samples with hyperelastic constitutive behavior are characterized under tension. The structures are designed and developed with several perforation aspect ratios, leading to various degrees of auxeticity. Global and local strain fields are characterized using a multiscale digital image correlation measurement approach. The local rotation and in‐plane strain fields generated within the solid portions of the unit cells are correlated with the global strain fields and macroscopic Poisson's ratios for a range of cell geometries. The interplay between cell rotation and strain at the meso (unit cell) scale is shown to be the dominant factor in the strain‐dependent evolution of the Poisson's ratio in the structures.more » « less
An official website of the United States government
