skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A mathematical justification for nonlinear constitutive relations between stress and linearized strain
We present an asymptotic framework that rigorously generates nonlinear constitutive relations between stress and linearized strain for elastic bodies. Each of these relations arises as the leading-order relationship satisfied by a oneparameter family of nonlinear constitutive relations between stress and nonlinear strain. The asymptotic parameter limits the overall range of strains that satisfy the corresponding constitutive relation in the one-parameter family, while the stresses can remain large (relative to a fixed stress scale). This differs from classical linearized elasticity where a fixed constitutive relation is assumed, and the magnitude of the displacement gradient serves as the asymptotic parameter. Also unlike classical approaches, the constitutive relations in our framework are expressed as implicit relationships between stress and strain rather than requiring stress explicitly expressed as a function of strain, adding conceptual simplicity and versatility. We demonstrate that our framework rigorously justifies nonlinear constitutive relations between stress and linearized strain including those with density-dependent Young’s moduli or derived from strain energies beyond quadratic forms.  more » « less
Award ID(s):
2307562
PAR ID:
10613932
Author(s) / Creator(s):
;
Publisher / Repository:
ZAMP_24
Date Published:
Journal Name:
Zeitschrift für angewandte Mathematik und Physik
Volume:
75
ISSN:
0044-2275
Page Range / eLocation ID:
https://doi.org/10.1007/s00033-024-02346-0
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present an asymptotic framework that rigorously generates nonlinear constitutive relations between stress and linearized strain for elastic bodies. Each of these relations arises as the leading order relationship satisfied by a one-parameter family of nonlinear constitutive relations between stress and nonlinear strain. The asymptotic parameter limits the overall range of strains that satisfy the corresponding constitutive relation in the one parameter family while the stresses can remain large (relative to a fixed stress scale). This differs from classical linearized elasticity where a fixed constitutive relation is assumed, and the magnitude of the displacement gradient serves as the asymptotic parameter. Also unlike classical approaches, the constitutive relations in our framework are expressed as implicit relationships between stress and strain rather than requiring stress explicitly expressed as a function of strain, adding conceptual simplicity and versatility. We demonstrate that our framework rigorously justifies nonlinear constitutive relations between stress and linearized strain including those with density-dependent Young’s moduli or derived from strain energies beyond quadratic forms. 
    more » « less
  2. Trabecular bone, a solid that has a heterogeneous porous structure, demonstrates nonlinear stress–strain relationship, even within the small strain region, when subject to stresses. It also exhibits different responses when subject to tension and compression. This study presents the development of an implicit constitutive relation between the stress and the linearized strain specifically tailored for trabecular bone-like materials. The structure of the constitutive relation requires the solution of the balance of linear momentum and the constitutive relations simultaneously, and in view of this, a two-field mixed finite element model capable of solving general boundary value problems governed by a system of coupled equations is proposed. We investigate the effects of nonlinearity and heterogeneity in a dogbone-shaped sample. Our study is able to capture the significant nonlinear characteristics of the response of the trabecular bone undergoing small strains in experiments, in both tension and compression, very well. 
    more » « less
  3. The circumferential shear of a nonlinear isotropic incompressible elastic annulus is studied using the neo-Hookean, Ogden constitutive relations in addition to a new constitutive relation for the Hencky strain in terms of the Cauchy stress. The predictions of the three constitutive relations to the specific boundary value problem are delineated. In view of the predictions being quite distinct between the new constitutive relation studied and that for the Ogden constitutive relation, it would be worthwhile to carry out an experiment to determine the efficacy of the models. 
    more » « less
  4. Recently, Arumugam et al. (2023) developed a constitutive relation for the response of isotropic inhomogeneous compressible elastic solids in order to describe the response of the trabecular bone. Since porous solids such as bones, cement concrete, rocks, metallic alloys, etc., are anisotropic, in this short note we develop a constitutive relation for such bodies that exhibit transverse isotropy and also having two preferred directions of symmetry. Another characteristic of bones is that they exhibit different response characteristics in tension and compression, and hence any constitutive relation that is developed has to be capable of describing this. Also, the material moduli depend on both the density and the mean value of the stress (mechanical pressure), as is to be expected in a porous solid. In the constitutive relation that is developed in this paper, though the stress and the linearized strain appear linearly in the constitutive relation, the relationship is nonlinear. We also derive the response of such solids when undergoing uniaxial extension and compression, simple shear and torsion. 
    more » « less
  5. We propose a thermodynamically based approach for constructing effective rate-type constitutive relations describing finite deformations of metamaterials. The effective constitutive relations are formulated as second-order in time rate-type Eulerian constitutive relations between only the Cauchy stress tensor, the Hencky strain tensor and objective time derivatives thereof. In particular, there is no need to introduce additional quantities or concepts such as “micro-level deformation”,“micromorphic continua”, or elastic solids with frequency dependent material properties. Moreover, the linearisation of the proposed fully nonlinear (finite deformations) constitutive relations leads, in Fourier/frequency space, to the same constitutive relations as those commonly used in theories based on the concepts of frequency dependent density and/or stiffness. From this perspective the proposed constitutive relations reproduce the behaviour predicted by the frequency dependent density and/or stiffness models, but yet they work with constant—that is motion independent—material properties. This is clearly more convenient from the physical point of view. Furthermore, the linearised version of the proposed constitutive relations leads to the governing partial differential equations that are particularly simple both in Fourier space as well as in physical space. Finally, we argue that the proposed fully nonlinear (finite deformations) second-order in time rate-type constitutive relations do not fall into traditional classes of models for elastic solids (hyperelastic solids/Green elastic solids, first-order in time hypoelastic solids), and that the proposed constitutive relations embody a new class of constitutive relations characterising elastic solids. 
    more » « less