skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 14, 2026

Title: Modeling metamaterials by second-order rate-type constitutive relations between only the macroscopic stress and strain
We propose a thermodynamically based approach for constructing effective rate-type constitutive relations describing finite deformations of metamaterials. The effective constitutive relations are formulated as second-order in time rate-type Eulerian constitutive relations between only the Cauchy stress tensor, the Hencky strain tensor and objective time derivatives thereof. In particular, there is no need to introduce additional quantities or concepts such as “micro-level deformation”,“micromorphic continua”, or elastic solids with frequency dependent material properties. Moreover, the linearisation of the proposed fully nonlinear (finite deformations) constitutive relations leads, in Fourier/frequency space, to the same constitutive relations as those commonly used in theories based on the concepts of frequency dependent density and/or stiffness. From this perspective the proposed constitutive relations reproduce the behaviour predicted by the frequency dependent density and/or stiffness models, but yet they work with constant—that is motion independent—material properties. This is clearly more convenient from the physical point of view. Furthermore, the linearised version of the proposed constitutive relations leads to the governing partial differential equations that are particularly simple both in Fourier space as well as in physical space. Finally, we argue that the proposed fully nonlinear (finite deformations) second-order in time rate-type constitutive relations do not fall into traditional classes of models for elastic solids (hyperelastic solids/Green elastic solids, first-order in time hypoelastic solids), and that the proposed constitutive relations embody a new class of constitutive relations characterising elastic solids.  more » « less
Award ID(s):
2307562
PAR ID:
10613956
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
arxiv_25_a
Date Published:
Page Range / eLocation ID:
https://arxiv.org/pdf/2502.10045
Format(s):
Medium: X
Institution:
arXiv
Sponsoring Org:
National Science Foundation
More Like this
  1. We present an asymptotic framework that rigorously generates nonlinear constitutive relations between stress and linearized strain for elastic bodies. Each of these relations arises as the leading order relationship satisfied by a one-parameter family of nonlinear constitutive relations between stress and nonlinear strain. The asymptotic parameter limits the overall range of strains that satisfy the corresponding constitutive relation in the one parameter family while the stresses can remain large (relative to a fixed stress scale). This differs from classical linearized elasticity where a fixed constitutive relation is assumed, and the magnitude of the displacement gradient serves as the asymptotic parameter. Also unlike classical approaches, the constitutive relations in our framework are expressed as implicit relationships between stress and strain rather than requiring stress explicitly expressed as a function of strain, adding conceptual simplicity and versatility. We demonstrate that our framework rigorously justifies nonlinear constitutive relations between stress and linearized strain including those with density-dependent Young’s moduli or derived from strain energies beyond quadratic forms. 
    more » « less
  2. We present an asymptotic framework that rigorously generates nonlinear constitutive relations between stress and linearized strain for elastic bodies. Each of these relations arises as the leading-order relationship satisfied by a oneparameter family of nonlinear constitutive relations between stress and nonlinear strain. The asymptotic parameter limits the overall range of strains that satisfy the corresponding constitutive relation in the one-parameter family, while the stresses can remain large (relative to a fixed stress scale). This differs from classical linearized elasticity where a fixed constitutive relation is assumed, and the magnitude of the displacement gradient serves as the asymptotic parameter. Also unlike classical approaches, the constitutive relations in our framework are expressed as implicit relationships between stress and strain rather than requiring stress explicitly expressed as a function of strain, adding conceptual simplicity and versatility. We demonstrate that our framework rigorously justifies nonlinear constitutive relations between stress and linearized strain including those with density-dependent Young’s moduli or derived from strain energies beyond quadratic forms. 
    more » « less
  3. A comparative study is presented to solve the inverse problem in elasticity for the shear modulus (stiffness) distribution utilizing two constitutive equations: (1) linear elasticity assuming small strain theory, and (2) finite elasticity with a hyperelastic neo-Hookean material model. Assuming that a material undergoes large deformations and material nonlinearity is assumed negligible, the inverse solution using (2) is anticipated to yield better results than (1). Given the fact that solving a linear elastic model is significantly faster than a nonlinear model and more robust numerically, we posed the following question: How accurately could we map the shear modulus distribution with a linear elastic model using small strain theory for a specimen undergoing large deformations? To this end, experimental displacement data of a silicone composite sample containing two stiff inclusions of different sizes under uniaxial displacement controlled extension were acquired using a digital image correlation system. The silicone based composite was modeled both as a linear elastic solid under infinitesimal strains and as a neo-Hookean hyperelastic solid that takes into account geometrically nonlinear finite deformations. We observed that the mapped shear modulus contrast, determined by solving an inverse problem, between inclusion and background was higher for the linear elastic model as compared to that of the hyperelastic one. A similar trend was observed for simulated experiments, where synthetically computed displacement data were produced and the inverse problem solved using both, the linear elastic model and the neo-Hookean material model. In addition, it was observed that the inverse problem solution was inclusion size-sensitive. Consequently, an 1-D model was introduced to broaden our understanding of this issue. This 1-D analysis revealed that by using a linear elastic approach, the overestimation of the shear modulus contrast between inclusion and background increases with the increase of external loads and target shear modulus contrast. Finally, this investigation provides valuable information on the validity of the assumption for utilizing linear elasticity in solving inverse problems for the spatial distribution of shear modulus associated with soft solids undergoing large deformations. Thus, this work could be of importance to characterize mechanical property variations of polymer based materials such as rubbers or in elasticity imaging of tissues for pathology. 
    more » « less
  4. Granular flows occur in a wide range of situations of practical interest to industry, in our natural environment and in our everyday lives. This paper focuses on granular flow in the so-called inertial regime, when the rheology is independent of the very large particle stiffness. Such flows have been modelled with the $$\unicode[STIX]{x1D707}(I),\unicode[STIX]{x1D6F7}(I)$$ -rheology, which postulates that the bulk friction coefficient $$\unicode[STIX]{x1D707}$$ (i.e. the ratio of the shear stress to the pressure) and the solids volume fraction $$\unicode[STIX]{x1D719}$$ are functions of the inertial number $$I$$ only. Although the $$\unicode[STIX]{x1D707}(I),\unicode[STIX]{x1D6F7}(I)$$ -rheology has been validated in steady state against both experiments and discrete particle simulations in several different geometries, it has recently been shown that this theory is mathematically ill-posed in time-dependent problems. As a direct result, computations using this rheology may blow up exponentially, with a growth rate that tends to infinity as the discretization length tends to zero, as explicitly demonstrated in this paper for the first time. Such catastrophic instability due to ill-posedness is a common issue when developing new mathematical models and implies that either some important physics is missing or the model has not been properly formulated. In this paper an alternative to the $$\unicode[STIX]{x1D707}(I),\unicode[STIX]{x1D6F7}(I)$$ -rheology that does not suffer from such defects is proposed. In the framework of compressible $$I$$ -dependent rheology (CIDR), new constitutive laws for the inertial regime are introduced; these match the well-established $$\unicode[STIX]{x1D707}(I)$$ and $$\unicode[STIX]{x1D6F7}(I)$$ relations in the steady-state limit and at the same time are well-posed for all deformations and all packing densities. Time-dependent numerical solutions of the resultant equations are performed to demonstrate that the new inertial CIDR model leads to numerical convergence towards physically realistic solutions that are supported by discrete element method simulations. 
    more » « less
  5. A novel computational strategy is presented to calculate from first principles the coefficient of thermal expansion and the elastic constants of a material over meaningful intervals of temperature and pressure. This strategy combines a novel implementation of the quasiharmonic approximation to calculate the isothermal-isochoric linear and nonlinear elastic constants of a material, with elementary equations of nonlinear continuum mechanics. Our implementation of the quasiharmonic approximation relies on finite deformations, the use of nonprimitive supercells to describe a material, a recently proposed technique to calculate generalized mode Grüneisen parameters, and the numerical differentiation of the stress tensor to calculate both second- and third-order elastic constants. The combination of this method with nonlinear continuum mechanics is shown to yield accurate predictions of lattice parameters and linear elastic constants of a material over finite intervals of temperature and pressure, at the cost of calculating isothermal second- and third-order elastic constants for a single reference state. Here, the validity and limits of our novel methods are assessed by carrying out calculations of MgO based on classical interatomic potentials. To demonstrate potential, our methods are then used in conjunction with a density functional theory approach to calculate thermal expansion and elastic properties of silicon, lithium hydrate, and graphite. 
    more » « less