Systems composed of several multi-layer compounds have been extremely useful in tailoring different quantum physical properties of nanomaterials. This is very much true when it comes to semiconductor materials and, in particular, to heterostructures and heterojunctions. The formalism of a position-dependent effective mass has proved to be a very efficient tool in those cases where quantum wells emerge either in one or two dimensions. In this work, we use a variety of mathematical theorems, as well as numerical computations, to study different scenarios pertaining to choices of a specific piecewise constant effective mass for a particle that causes its energy eigenvalues to reach an extremum. These results are relevant when it comes to practical technological applications such as modifying the optical energy gap between the first excited state and the ground state energy of the system. At the end of our contribution, we also question the physical validity of some approximations for systems with particles that possess a position-dependent mass especially for those cases in which the mass distribution is divergent.
more »
« less
This content will become publicly available on February 26, 2026
The conclusion that metamaterials could have negative mass is a consequence of improper constitutive characterization
The concept of ‘effective mass’ is frequently used for the simplification of complex lumped parameter systems (discrete dynamical systems) as well as materials that have complicated microstructural features. From the perspective of wave propagation, it is claimed that for some bodies described as metamaterials, the corresponding ‘effective mass’ can be frequency dependent, negative or it may not even be a scalar quantity. The procedure has even led some authors to suggest that Newton’s second law needs to be modified within the context of classical continuum mechanics. Such absurd physical conclusions are a consequence of appealing to the notion of ‘effective mass’ with a preconception for the constitutive structure of the metamaterial and using a correct mathematical procedure. We show that such unreasonable physical conclusions would not arise if we were to use the appropriate ‘effective constitutive relation’ for the metamaterial, rather than use the concept of ‘effective mass’ with an incorrect predetermined constitutive relation.
more »
« less
- Award ID(s):
- 2307562
- PAR ID:
- 10613937
- Publisher / Repository:
- MMS_25
- Date Published:
- Journal Name:
- Mathematics and mechanics of solids
- ISSN:
- 1741-3028
- Page Range / eLocation ID:
- https://doi.org/10.1177/10812865241308
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Recently, Arumugam et al. (2023) developed a constitutive relation for the response of isotropic inhomogeneous compressible elastic solids in order to describe the response of the trabecular bone. Since porous solids such as bones, cement concrete, rocks, metallic alloys, etc., are anisotropic, in this short note we develop a constitutive relation for such bodies that exhibit transverse isotropy and also having two preferred directions of symmetry. Another characteristic of bones is that they exhibit different response characteristics in tension and compression, and hence any constitutive relation that is developed has to be capable of describing this. Also, the material moduli depend on both the density and the mean value of the stress (mechanical pressure), as is to be expected in a porous solid. In the constitutive relation that is developed in this paper, though the stress and the linearized strain appear linearly in the constitutive relation, the relationship is nonlinear. We also derive the response of such solids when undergoing uniaxial extension and compression, simple shear and torsion.more » « less
-
Abstract Recent work in nonlinear topological metamaterials has revealed many useful properties such as amplitude dependent localized vibration modes and nonreciprocal wave propagation. However, thus far, there have not been any studies to include the use of local resonators in these systems. This work seeks to fill that gap through investigating a nonlinear quasi-periodic metamaterial with periodic local resonator attachments. We model a one-dimensional metamaterial lattice as a spring-mass chain with coupled local resonators. Quasi-periodic modulation in the nonlinear connecting springs is utilized to achieve topological features. For comparison, a similar system without local resonators is also modeled. Both analytical and numerical methods are used to study this system. The dispersion relation of the infinite chain of the proposed system is determined analytically through the perturbation method of multiple scales. This analytical solution is compared to the finite chain response, estimated using the method of harmonic balance and solved numerically. The resulting band structures and mode shapes are used to study the effects of quasi-periodic parameters and excitation amplitude on the system behavior both with and without the presence of local resonators. Specifically, the impact of local resonators on topological features such as edge modes is established, demonstrating the appearance of a trivial bandgap and multiple localized edge states for both main cells and local resonators. These results highlight the interplay between local resonance and nonlinearity in a topological metamaterial demonstrating for the first time the presence of an amplitude invariant bandgap alongside amplitude dependent topological bandgaps.more » « less
-
The analogy between acoustic modes in nonlinear metamaterials and quantum computing platforms constituted of correlated two-level systems opens new frontiers in information science. We use an inductive procedure to demonstrate scalable initialization of and scalable unitary transformations on superpositions of states of multiple correlated logical phi-bits, classical nonlinear acoustic analog of qubits. A multiple phi-bit state representation as a complex vector in a high-dimensional, exponentially scaling Hilbert space is shown to correspond with the state of logical phi-bits represented in a low-dimensional linearly scaling physical space of an externally driven acoustic metamaterial. Manipulation of the phi-bits in the physical space enables the implementation of a non-trivial multiple phi-bit unitary transformation that scales exponentially. This scalable transformation operates in parallel on the components of the multiple phi-bit complex state vector, requiring only a single physical action on the metamaterial. This work demonstrates that acoustic metamaterials offer a viable path toward achieving massively parallel information processing capabilities that can challenge current quantum computing paradigms.more » « less
-
Non-Newtonian fluids are characterized by complex rheological behaviour that affects the hydrodynamic features, such as the flow rate–pressure drop relation. While flow rate–pressure drop measurements of such fluids are common in the literature, a comparison of experimental data with theory is rare, even for shear-thinning fluids at low Reynolds number, presumably due to the lack of analytical expressions for the flow rate–pressure drop relation covering the entire range of pressures and flow rates. Such a comparison, however, is of fundamental importance as it may provide insight into the adequacy of the constitutive model that was used and the values of the rheological parameters. In this work, we present a theoretical approach to calculating the flow rate–pressure drop relation of shear-thinning fluids in long, narrow channels that can be used for comparison with experimental measurements. We utilize the Carreau constitutive model and provide a semi-analytical expression for the flow rate–pressure drop relation. In particular, we derive three asymptotic solutions for small, intermediate and large values of the dimensionless pressures or flow rates, which agree with distinct limits previously known and allow us to approximate analytically the entire flow rate–pressure drop curve. We compare our semi-analytical and asymptotic results with the experimental measurements of Pipe et al. ( Rheol. Acta , vol. 47, 2008, pp. 621–642) and find excellent agreement. Our results rationalize the change in the slope of the flow rate–pressure drop data, when reported in log–log coordinates, at high flow rates, which cannot be explained using a simple power-law model.more » « less
An official website of the United States government
