In the strong magnetic field of a neutron star’s magnetosphere, axions coupled to electromagnetism develop a nonzero probability to convert into photons. Past studies have revealed that the axion-photon conversion can be resonantly enhanced. We recognize that the axion-photon resonance admits two parametrically distinct resonant solutions, which we call the mass-matched resonance and the Euler-Heisenberg assisted resonance. The mass-matched resonance occurs at a point in the magnetosphere where the radially-varying plasma frequency crosses the axion mass . The Euler-Heisenberg assisted resonance occurs where the axion energy satisfies . This second resonance is made possible though the strong background magnetic field , as well as the nonzero Euler-Heisenberg four-photon self-interaction, which has the coupling . We study the resonant conversion of relativistic axion dark radiation into photons via the Euler-Heisenberg assisted resonance, and we calculate the expected electromagnetic radiation assuming different values for the axion-photon coupling and different amplitudes for the axion flux onto the neutron star . We briefly discuss several possible sources of axion dark radiation. Achieving a sufficiently strong axion flux to induce a detectable electromagnetic signal seems unlikely. Published by the American Physical Society2024
more »
« less
This content will become publicly available on April 1, 2026
Highly excited electron cyclotron for QCD axion and dark-photon detection
We propose using highly excited cyclotron states of a trapped electron to detect meV axion and dark-photon dark matter, marking a significant improvement over our previous proposal and demonstration [One-electron quantum cyclotron as a milli-ev dark-photon detector, .]. When the axion mass matches the cyclotron frequency , the cyclotron state is resonantly excited, with a transition probability proportional to its initial quantum number, . The sensitivity is enhanced by taking . By optimizing key experimental parameters, we minimize the required averaging time for cyclotron detection to s, permitting detection of such a highly excited state before its decay. An open–end-cap trap design enables the external photon signal to be directed into the trap, rendering our background-free detector compatible with large focusing cavities, such as the BREAD proposal, while capitalizing on their strong magnetic fields. Furthermore, the axion conversion rate can be coherently enhanced by incorporating layers of dielectrics with alternating refractive indices within the cavity. Collectively, these optimizations enable us to probe the QCD axion parameter space from 0.1 to 2.3 meV (25–560 GHz), covering a substantial portion of the predicted postinflationary QCD axion mass range. This sensitivity corresponds to probing the kinetic mixing parameter of the dark photon down to . Published by the American Physical Society2025
more »
« less
- Award ID(s):
- 2310429
- PAR ID:
- 10614047
- Publisher / Repository:
- American Physical Society
- Date Published:
- Journal Name:
- Physical Review D
- Volume:
- 111
- Issue:
- 7
- ISSN:
- 2470-0010
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
is an experimental search for dark matter axions. It uses a solenoidal dc magnetic field to convert an axion dark-matter signal to an ac electromagnetic response in a coaxial copper pickup. The current induced by this axion signal is measured by dc SQUIDs. is designed to be sensitive to Kim-Shifman-Vainshtein-Zakharov (KSVZ) and Dine-Fischler-Srednicki-Zhitnisky (DFSZ) QCD axion models in the 10–200 MHz ( ) range, and to axions with over 5–30 MHz as an extended goal. In this work, we present the electromagnetic modeling of the response of the experiment to an axion signal over the full frequency range of , which extends from the low-frequency, lumped-element limit to a regime where the axion Compton wavelength is only a factor of 2 larger than the detector size. With these results, we determine the live time and sensitivity of the experiment. The primary science goal of sensitivity to DFSZ axions across 30–200 MHz can be achieved with a live scan time of 2.9 years.more » « less
-
We present a comprehensive study of decays using pairs collected with the Belle detector at the KEKB collider. This process is a suppressed charmless decay into two vector mesons and can exhibit interesting polarization and violation. The decay is observed for the first time with a significance of 7.9 standard deviations. We measure a branching fraction , a fraction of longitudinal polarization , and a time-integrated asymmetry , where the first uncertainties listed are statistical and the second are systematic. This is the first observation of and the first measurements of and for this decay. Published by the American Physical Society2024more » « less
-
Many excited states in the hadron spectrum have large branching ratios to three-hadron final states. Understanding such particles from first principles QCD requires input from lattice QCD with one-, two-, and three-meson interpolators as well as a reliable three-body formalism relating finite-volume spectra at unphysical pion mass values to the scattering amplitudes at the physical point. In this work, we provide the first-ever calculation of the resonance parameters of the meson from lattice QCD, including an update of the formalism through matching to effective field theories. The main result of this pioneering study, the pole position of the meson at , agrees reasonably well with experiment. In addition we provide an estimate of the mass difference as 29(15) MeV. Published by the American Physical Society2024more » « less
-
We perform the first search for ultralight dark matter using a magnetically levitated particle. A submillimeter permanent magnet is levitated in a superconducting trap with a measured force sensitivity of . We find no evidence of a signal and derive limits on dark matter coupled to the difference between baryon and lepton number, , in the mass range . Our most stringent limit on the coupling strength is . We propose the POLONAISE (Probing Oscillations using Levitated Objects for Novel Accelerometry In Searches of Exotic physics) experiment, which features short-, medium-, and long-term upgrades that will give us leading sensitivity in a wide mass range, demonstrating the promise of this novel quantum sensing technology in the hunt for dark matter. Published by the American Physical Society2025more » « less
An official website of the United States government
