skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 15, 2026

Title: Identification and Estimation of Causal Effects Using Non‐Concurrent Controls in Platform Trials
ABSTRACT Platform trials are multi‐arm designs that simultaneously evaluate multiple treatments for a single disease within the same overall trial structure. Unlike traditional randomized controlled trials, they allow treatment arms to enter and exit the trial at distinct times while maintaining a control arm throughout. This control arm comprises both concurrent controls, where participants are randomized concurrently to either the treatment or control arm, and non‐concurrent controls, who enter the trial when the treatment arm under study is unavailable. While flexible, platform trials introduce the challenge of using non‐concurrent controls, raising questions about estimating treatment effects. Specifically, which estimands should be targeted? Under what assumptions can these estimands be identified and estimated? Are there any efficiency gains? In this article, we discuss issues related to the identification and estimation assumptions of common choices of estimand. We conclude that the most robust strategy to increase efficiency without imposing unwarranted assumptions is to target the concurrent average treatment effect (cATE), the ATE among only concurrent units, using a covariate‐adjusted doubly robust estimator. Our studies suggest that, for the purpose of obtaining efficiency gains, collecting important prognostic variables is more important than relying on non‐concurrent controls. We also discuss the perils of targeting ATE due to an untestable extrapolation assumption that will often be invalid. We provide simulations illustrating our points and an application to the ACTT platform trial, resulting in a 20% improvement in precision compared to the naive estimator that ignores non‐concurrent controls and prognostic variables.  more » « less
Award ID(s):
2306556
PAR ID:
10614234
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Statistics in Medicine
Volume:
44
Issue:
6
ISSN:
0277-6715
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Complementary features of randomized controlled trials (RCTs) and observational studies (OSs) can be used jointly to estimate the average treatment effect of a target population. We propose a calibration weighting estimator that enforces the covariate balance between the RCT and OS, therefore improving the trial-based estimator's generalizability. Exploiting semiparametric efficiency theory, we propose a doubly robust augmented calibration weighting estimator that achieves the efficiency bound derived under the identification assumptions. A nonparametric sieve method is provided as an alternative to the parametric approach, which enables the robust approximation of the nuisance functions and data-adaptive selection of outcome predictors for calibration. We establish asymptotic results and confirm the finite sample performances of the proposed estimators by simulation experiments and an application on the estimation of the treatment effect of adjuvant chemotherapy for early-stage non-small-cell lung patients after surgery. 
    more » « less
  2. The sequential multiple assignment randomized trial (SMART) is the gold standard trial design to generate data for the evaluation of multistage treatment regimes. As with conventional (single‐stage) randomized clinical trials, interim monitoring allows early stopping; however, there are few methods for principled interim analysis in SMARTs. Because SMARTs involve multiple stages of treatment, a key challenge is that not all enrolled participants will have progressed through all treatment stages at the time of an interim analysis. Wu et al. (2021) propose basing interim analyses on an estimator for the mean outcome under a given regime that uses data only from participants who have completed all treatment stages. We propose an estimator for the mean outcome under a given regime that gains efficiency by using partial information from enrolled participants regardless of their progression through treatment stages. Using the asymptotic distribution of this estimator, we derive associated Pocock and O'Brien‐Fleming testing procedures for early stopping. In simulation experiments, the estimator controls type I error and achieves nominal power while reducing expected sample size relative to the method of Wu et al. (2021). We present an illustrative application of the proposed estimator based on a recent SMART evaluating behavioral pain interventions for breast cancer patients. 
    more » « less
  3. The first step toward investigating the effectiveness of a treatment via a randomized trial is to split the population into control and treatment groups then compare the average response of the treatment group receiving the treatment to the control group receiving the placebo. To ensure that the difference between the two groups is caused only by the treatment, it is crucial that the control and the treatment groups have similar statistics. Indeed, the validity and reliability of a trial are determined by the similarity of two groups’ statistics. Covariate balancing methods increase the similarity between the distributions of the two groups’ covariates. However, often in practice, there are not enough samples to accurately estimate the groups’ covariate distributions. In this article, we empirically show that covariate balancing with the standardized means difference (SMD) covariate balancing measure, as well as Pocock and Simon’s sequential treatment assignment method, are susceptible to worst case treatment assignments. Worst case treatment assignments are those admitted by the covariate balance measure, but result in highest possible ATE estimation errors. We developed an adversarial attack to find adversarial treatment assignment for any given trial. Then, we provide an index to measure how close the given trial is to the worst case. To this end, we provide an optimization-based algorithm, namely adversarial treatment assignment in treatment effect trials (ATASTREET), to find the adversarial treatment assignments. 
    more » « less
  4. Summary In some randomized clinical trials, patients may die before the measurement time point of their outcomes. Even though randomization generates comparable treatment and control groups, the remaining survivors often differ significantly in background variables that are prognostic to the outcomes. This is called the truncation by death problem. Under the potential outcomes framework, the only well-defined causal effect on the outcome is within the subgroup of patients who would always survive under both treatment and control. Because the definition of the subgroup depends on the potential values of the survival status that could not be observed jointly, without making strong parametric assumptions, we cannot identify the causal effect of interest and consequently can only obtain bounds of it. Unfortunately, however, many bounds are too wide to be useful. We propose to use detailed survival information before and after the measurement time point of the outcomes to sharpen the bounds of the subgroup causal effect. Because survival times contain useful information about the final outcome, carefully utilizing them could improve statistical inference without imposing strong parametric assumptions. Moreover, we propose to use a copula model to relax the commonly-invoked but often doubtful monotonicity assumption that the treatment extends the survival time for all patients. 
    more » « less
  5. Abstract Censored survival data are common in clinical trial studies. We propose a unified framework for sensitivity analysis to censoring at random in survival data using multiple imputation and martingale, called SMIM. The proposed framework adopts the δ‐adjusted and control‐based models, indexed by the sensitivity parameter, entailing censoring at random and a wide collection of censoring not at random assumptions. Also, it targets a broad class of treatment effect estimands defined as functionals of treatment‐specific survival functions, taking into account missing data due to censoring. Multiple imputation facilitates the use of simple full‐sample estimation; however, the standard Rubin's combining rule may overestimate the variance for inference in the sensitivity analysis framework. We decompose the multiple imputation estimator into a martingale series based on the sequential construction of the estimator and propose the wild bootstrap inference by resampling the martingale series. The new bootstrap inference has a theoretical guarantee for consistency and is computationally efficient compared to the nonparametric bootstrap counterpart. We evaluate the finite‐sample performance of the proposed SMIM through simulation and an application on an HIV clinical trial. 
    more » « less