skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Functionalized Cyclic Poly(α‐Hydroxy Acids) via Controlled Ring‐Opening Polymerization of O‐Carboxyanhydrides
Linear poly(α‐hydroxy acids) are important degradable polymers, and they can be efficiently prepared by ring‐opening polymerization of O‐carboxyanhydrides with pendant functional groups. However, attempts to prepare cyclic poly(α‐hydroxy acids) have been plagued by side reactions, including epimerization and uncontrolled intramolecular chain transfers or termination, that prevent the synthesis of high‐molecular‐weight stereoregular cyclic polyesters. Herein, we report a scalable method for the synthesis of high‐molecular‐weight (>100 kDa) stereoregular functionalized cyclic poly(α‐hydroxy acids) by means of controlled polymerization of O‐carboxyanhydrides using a catalytic system consisting of a lanthanum complex with a sterically bulky ligand and a manganese silylamide. Additionally, using this system, we could readily prepare cyclic block poly(α‐hydroxy acids) by means of sequential addition of O‐carboxyanhydrides. The obtained cyclic polyesters and their cyclic block copolyesters exhibit distinctive physicochemical properties—including elevated phase transition temperature, improved toughness, and reduced viscosity—compared to their linear counterparts.  more » « less
Award ID(s):
2404069
PAR ID:
10614245
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
64
Issue:
24
ISSN:
1433-7851
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Despite the degradability and biocompatibility of poly(α-hydroxy acids), their utility remains limited because their thermal and mechanical properties are inferior to those of commodity polyolefins, which can be attributed to the lack of side-chain functionality on the polyester backbone. Attempts to synthesize high-molecular-weight functionalized poly(α-hydroxy acids) from O-carboxyanhydrides have been hampered by scalability problems arising from the need for an external energy source such as light or electricity. Herein, we report an operationally simple, scalable method for the synthesis of stereoregular, high-molecular-weight (>200 kDa) functionalized poly(α-hydroxy acids) by means of controlled ring-opening polymerization of O-carboxyanhydrides mediated by a highly redox reactive manganese complex and a zinc-alkoxide. Mechanistic studies indicated that the ring-opening process likely proceeded via the Mn-mediated decarboxylation with alkoxy radical formation. Gradient copolymers produced directly by this method from mixtures of two O-carboxyanhydrides exhibited better ductility and toughness than their corresponding homopolymers and block copolymers, therefore highlighting the potential feasibility of functionalized poly(α-hydroxy acids) as ductile and resilient polymeric materials. 
    more » « less
  2. null (Ed.)
    Poly(α-hydroxy acids), as a family of biodegradable polyesters, are valuable materials due to their broad applications in packaging, agriculture, and biomedical engineering. Herein we highlight and explore recent advances of catalysts in controlled ring-opening polymerization of O-carboxyanhydrides towards functionalized poly(α-hydroxy acids), especially metal catalyst-mediated controlled polymerization. Limitations of current polymerization strategies of O-carboxyanhydrides are discussed. 
    more » « less
  3. null (Ed.)
    Photoredox ring-opening polymerization of O -carboxyanhydrides allows for the synthesis of polyesters with precisely controlled molecular weights, molecular weight distributions, and tacticities. While powerful, obviating the use of precious metal-based photocatalysts would be attractive from the perspective of simplifying the protocol and enabling unexpected reactivity. Herein, we report the Co and Zn catalysts that are activated by external light to mediate efficient ring-opening polymerization of O -carboxyanhydrides, without the use of exogenous precious metal-based photocatalysts. Our methods allow for the synthesis of isotactic polyesters with high molecular weights (>200 kDa) and narrow molecular weight distributions ( M w / M n < 1.1). Mechanistic studies indicate that light activates the oxidative status of Co III intermediate that is generated from the regioselective ring-opening of the O -carboxyanhydride. We also demonstrate that the use of Zn or Hf complexes together with Co can allow for stereoselective photoredox ring-opening polymerizations of multiple racemic O -carboxyanhydrides to synthesize syndiotactic and stereoblock copolymers, which vary widely in their glass transition temperatures. 
    more » « less
  4. Ribozymes synthesize proteins in a highly regulated local environment to minimize side reactions caused by various competing species. In contrast, it is challenging to prepare synthetic polypeptides from the polymerization of N -carboxyanhydrides (NCAs) in the presence of water and impurities, which induce monomer degradations and chain terminations, respectively. Inspired by natural protein synthesis, we herein report the preparation of well-defined polypeptides in the presence of competing species, by using a water/dichloromethane biphasic system with macroinitiators anchored at the interface. The impurities are extracted into the aqueous phase in situ, and the localized macroinitiators allow for NCA polymerization at a rate which outpaces water-induced side reactions. Our polymerization strategy streamlines the process from amino acids toward high molecular weight polypeptides with low dispersity by circumventing the tedious NCA purification and the demands for air-free conditions, enabling low-cost, large-scale production of polypeptides that has potential to change the paradigm of polypeptide-based biomaterials. 
    more » « less
  5. Organocatalyzed ring-opening polymerization (O-ROP) of a six-five bicyclic lactone, 4,5- trans -cyclohexyl-fused γ-butyrolactone (4,5-T6GBL), can be topologically selective or living at room temperature, depending on catalyst structure. A screening of (thio)urea [(T)U] and organic base pairs revealed unique trends in reactivity for this monomer as well as the most active catalyst pairs, which were employed as received commercially to produce relatively high molecular weight ( M n up to 106 kDa), low dispersity ( Đ = 1.04) linear poly(4,5-T6GBL) in a living fashion. The ROP using a hybrid organic/inorganic pair of TU/KOMe in neat conditions led to poly(4,5-T6GBL) with even higher molecular weight ( M n = 215 kDa, Đ = 1.04). In comparison to the metal-catalyzed system, (T)U-base pairs exhibited competitive kinetics and reached higher monomer conversions, and their reactions can be performed in air. In addition, the resulting polymers required less purification to produce materials with higher onset decomposition temperature. (T)U-base pairs were selective towards linear polymerization only, whereas triazabicyclodecene can catalyze both polymerization and (quantitative) depolymerization processes, depending on reaction conditions. Cyclic polymers with M n = 41–72 kDa were selectively formed via N-heterocyclic carbene-mediated zwitterionic O-ROP. 
    more » « less