Characterized by the accumulation of somatic mutations in blood cell lineages, clonal hematopoiesis of indeterminate potential (CHIP) is frequent in aging and involves the expansion of mutated hematopoietic stem and progenitor cells (HSC/Ps) that leads to an increased risk of hematologic malignancy. However, the risk factors that contribute to CHIPassociated clonal hematopoiesis (CH) are poorly understood. Obesity induces a proinflammatory state and fatty bone marrow (FBM), which may influence CHIP-associated pathologies. We analyzed exome sequencing and clinical data for 47,466 individuals with validated CHIP in the UK Biobank. CHIP was present in 5.8% of the study population and was associated with a significant increase in the waist-to-hip ratio (WHR). Mouse models of obesity and CHIP driven by heterozygosity of Tet2, Dnmt3a, Asxl1, and Jak2 resulted in exacerbated expansion of mutant HSC/Ps due in part to excessive inflammation. Our results show that obesity is highly associated with CHIP and that a proinflammatory state could potentiate the progression of CHIP to more significant hematologic neoplasia. The calcium channel blockers nifedipine and SKF-96365, either alone or in combination with metformin, MCC950, or anakinra (IL-1 receptor antagonist), suppressed the growth of mutant CHIP cells and partially restored normal hematopoiesis. Targeting CHIP-mutant cells with these drugs could be a potential therapeutic approach to treat CH and its associated abnormalities in individuals with obesity.
more »
« less
Dynamically adjusted cell fate decisions and resilience to mutant invasion during steady-state hematopoiesis revealed by an experimentally parameterized mathematical model
A major next step in hematopoietic stem cell (HSC) biology is to enhance our quantitative understanding of cellular and evolutionary dynamics involved in undisturbed hematopoiesis. Mathematical models have been and continue to be key in this respect, and are most powerful when parameterized experimentally and containing sufficient biological complexity. In this paper, we use data from label propagation experiments in mice to parameterize a mathematical model of hematopoiesis that includes homeostatic control mechanisms as well as clonal evolution. We find that nonlinear feedback control can drastically change the interpretation of kinetic estimates at homeostasis. This suggests that short-term HSC and multipotent progenitors can dynamically adjust to sustain themselves temporarily in the absence of long-term HSCs, even if they differentiate more often than they self-renew in undisturbed homeostasis. Additionally, the presence of feedback control in the model renders the system resilient against mutant invasion. Invasion barriers, however, can be overcome by a combination of age-related changes in stem cell differentiation and evolutionary niche construction dynamics based on a mutant-associated inflammatory environment. This helps us understand the evolution of e.g.,TET2orDNMT3Amutants, and how to potentially reduce mutant burden.
more »
« less
- PAR ID:
- 10614291
- Publisher / Repository:
- National Academy of Sciences
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 121
- Issue:
- 38
- ISSN:
- 0027-8424
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Chronic myeloid leukemia (CML) is a blood cancer characterized by dysregulated production of maturing myeloid cells driven by the product of the Philadelphia chromosome, the BCR-ABL1 tyrosine kinase. Tyrosine kinase inhibitors (TKIs) have proved effective in treating CML, but there is still a cohort of patients who do not respond to TKI therapy even in the absence of mutations in the BCR-ABL1 kinase domain that mediate drug resistance. To discover novel strategies to improve TKI therapy in CML, we developed a nonlinear mathematical model of CML hematopoiesis that incorporates feedback control and lineage branching. Cell–cell interactions were constrained using an automated model selection method together with previous observations and new in vivo data from a chimericBCR-ABL1transgenic mouse model of CML. The resulting quantitative model captures the dynamics of normal and CML cells at various stages of the disease and exhibits variable responses to TKI treatment, consistent with those of CML patients. The model predicts that an increase in the proportion of CML stem cells in the bone marrow would decrease the tendency of the disease to respond to TKI therapy, in concordance with clinical data and confirmed experimentally in mice. The model further suggests that, under our assumed similarities between normal and leukemic cells, a key predictor of refractory response to TKI treatment is an increased maximum probability of self-renewal of normal hematopoietic stem cells. We use these insights to develop a clinical prognostic criterion to predict the efficacy of TKI treatment and design strategies to improve treatment response. The model predicts that stimulating the differentiation of leukemic stem cells while applying TKI therapy can significantly improve treatment outcomes.more » « less
-
Hematopoiesis has been studied via stem cell labeling using barcodes, viral integration sites (VISs), or in situ methods. Subsequent proliferation and differentiation preserve the tag identity, thus defining a clone of mature cells across multiple cell type or lineages. By tracking the population of clones, measured within samples taken at discrete time points, we infer physiological parameters associated with a hybrid stochastic-deterministic mathematical model of hematopoiesis. We analyze clone population data from Koelle et al. ( Koelle et al., 2017 ) and compare the states of clones (mean and variance of their abundances) and the state-space density of clones with the corresponding quantities predicted from our model. Comparing our model to the tagged granulocyte populations, we find parameters (stem cell carrying capacity, stem cell differentiation rates, and the proliferative potential of progenitor cells, and sample sizes) that provide reasonable fits in three out of four animals. Even though some observed features cannot be quantitatively reproduced by our model, our analyses provides insight into how model parameters influence the underlying mechanisms in hematopoiesis. We discuss additional mechanisms not incorporated in our model.more » « less
-
Abstract The infection of cells by multiple copies of a given virus can impact viral evolution in a variety of ways, yet some of the most basic evolutionary dynamics remain underexplored. Using computational models, we investigate how infection multiplicity affects the fixation probability of mutants, the rate of mutant generation, and the timing of mutant invasion. An important insight from these models is that for neutral and disadvantageous phenotypes, rare mutants initially enjoy a fitness advantage in the presence of multiple infection of cells. This arises because multiple infection allows the rare mutant to enter more target cells and to spread faster, while it does not accelerate the spread of the resident wild-type virus. The rare mutant population can increase by entry into both uninfected and wild-type-infected cells, while the established wild-type population can initially only grow through entry into uninfected cells. Following this initial advantageous phase, the dynamics are governed by drift or negative selection, respectively, and a higher multiplicity reduces the chances that mutants fix in the population. Hence, while increased infection multiplicity promotes the presence of neutral and disadvantageous mutants in the short-term, it makes it less likely in the longer term. We show how these theoretical insights can be useful for the interpretation of experimental data on virus evolution at low and high multiplicities. The dynamics explored here provide a basis for the investigation of more complex viral evolutionary processes, including recombination, reassortment, as well as complementary/inhibitory interactions.more » « less
-
Pascual, Mercedes (Ed.)To study viral evolutionary processes within patients, mathematical models have been instrumental. Yet, the need for stochastic simulations of minority mutant dynamics can pose computational challenges, especially in heterogeneous systems where very large and very small sub-populations coexist. Here, we describe a hybrid stochastic-deterministic algorithm to simulate mutant evolution in large viral populations, such as acute HIV-1 infection, and further include the multiple infection of cells. We demonstrate that the hybrid method can approximate the fully stochastic dynamics with sufficient accuracy at a fraction of the computational time, and quantify evolutionary end points that cannot be expressed by deterministic models, such as the mutant distribution or the probability of mutant existence at a given infected cell population size. We apply this method to study the role of multiple infection and intracellular interactions among different virus strains (such as complementation and interference) for mutant evolution. Multiple infection is predicted to increase the number of mutants at a given infected cell population size, due to a larger number of infection events. We further find that viral complementation can significantly enhance the spread of disadvantageous mutants, but only in select circumstances: it requires the occurrence of direct cell-to-cell transmission through virological synapses, as well as a substantial fitness disadvantage of the mutant, most likely corresponding to defective virus particles. This, however, likely has strong biological consequences because defective viruses can carry genetic diversity that can be incorporated into functional virus genomes via recombination. Through this mechanism, synaptic transmission in HIV might promote virus evolvability.more » « less
An official website of the United States government

