skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Title: Secondary science teachers' conceptualizations and modifications to support equitable participation in a co‐designed computational thinking lesson
Abstract Increasing access to computational ideas and practices is one important reason to integrate computational thinking (CT) in science classrooms. While integrating CT into science classrooms broadens exposure to computing, it may not be enough to ensure equitable participation in the science classroom. Equitable participation is crucial because providing students with an environment in which they are able to fully engage and participate in science and computing practices empowers students to learn and continue pursuing CT and science. To foreground equitable participation in CT‐integrated curricula, we undertook a research project in which researchers and teachers examined teacher conceptualizations of equitable participation and how teachers design for equitable participation by modifying a lesson that introduces computational modeling in science. The following research questions guided the study: (1) What are teachers' conceptualizations of equitable participation? (2) How do teachers design for equitable participation through co‐design of a CT‐integrated unit? Our findings suggest that teachers conceptualized and designed for equitable participation in the context of a CT‐integrated curriculum across three primary dimensions: accessibility, inclusion, and relevancy. Our contributions to the field of science teaching and learning are twofold: (1) obtaining an initial understanding of how teachers think about and design for equitable participation is crucial in order to support teachers in their pursuit of creating equitable learning experiences for CT and science learners, and (2) our findings show that we can study teacher conceptualizations and their design choices by examining specific modifications to a CT‐integrated science curriculum. Implications are discussed.  more » « less
Award ID(s):
2303582
PAR ID:
10614359
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Journal of Research in Science Teaching
Volume:
62
Issue:
5
ISSN:
0022-4308
Page Range / eLocation ID:
1167 to 1201
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Kong, S.C. (Ed.)
    This work aims to help high school STEM teachers integrate computational thinking (CT) into their classrooms by engaging teachers as curriculum co-designers. K-12 teachers who are not trained in computer science may not see the value of CT in STEM classrooms and how to engage their students in computational practices that reflect the practices of STEM professionals. To this end, we developed a 4-week professional development workshop for eight science and mathematics high school teachers to co-design computationally enhanced curriculum with our team of researchers. The workshop first provided an introduction to computational practices and tools for STEM education. Then, teachers engaged in co-design to enhance their science and mathematics curricula with computational practices in STEM. Data from surveys and interviews showed that teachers learned about computational thinking, computational tools, coding, and the value of collaboration after the professional development. Further, they were able to integrate multiple computational tools that engage their students in CT-STEM practices. These findings suggest that teachers can learn to use computational practices and tools through workshops, and that teachers collaborating with researchers in co-design to develop computational enhanced STEM curriculum may be a powerful way to engage students and teachers with CT in K-12 classrooms. 
    more » « less
  2. Gresalfi, M. and (Ed.)
    Teachers in K-12 science classrooms play a key role in helping their students engage in computational thinking (CT) activities that reflect authentic science practices. However, we know less about how to support teachers in integrating CT into their classrooms. This paper presents a case of one science teacher over three years as she participated in a Design Based Implementation Research project focused on integrating CT into science curriculum. We analyze her professional growth as a designer and instructor as she created and implemented three computationally-enriched science units with the support of our research team. Results suggest that she became more confident in her understanding of and ability, leading to greater integration of CT in the science units. Relationships with the research team and co-design experiences mediated this growth. Findings yield implications for how best to support teachers in collaborative curriculum design. 
    more » « less
  3. Abstract Science educators are integrating more and more computational thinking (CT) activities into their curricula. Proponents of CT offer two motivations: familiarizing students with a realistic depiction of the computational nature of modern scientific practices and encouraging more students from underrepresented backgrounds to pursue careers in science, technology, engineering, and mathematics. However, some studies show that increasing exposure to computing may not necessarily translate to the hypothesized gains in participation by female students and students of color. Therefore, paying close attention to students' engagement in computationally intense science activities is important to finding more impactful ways to promote equitable science education. In this paper, we present an in‐depth analysis of the interactions among a small, racially diverse group of high school students during a chemistry unit with tightly integrated CT activities. We find a salient interaction between the students' engagement with the CT activities and their social identification with publicly recognizable categories such as “enjoys coding” or “finds computing boring.” We show that CT activities in science education can lead to numerous rich interactions that could, if leveraged correctly, allow educators to facilitate more inclusive science classrooms. However, we also show that such opportunities would be missed unless teachers are attentive to them. We discuss the implications of our findings on future work to integrate CT across science curricula and teacher education. 
    more » « less
  4. Massachusetts defined K-12 Digital Literacy/Computer Science (DLCS) standards in 2016 and developed a 5-12 teacher licensure process, expecting K-4 teachers to be capable of teaching to the standards under their elementary license. An NSF CSforAll planning grant led to the establishment of an NSF 4-year ResearchPractice Partnership (RPP) of district and school administrators, teachers, university researchers, and external evaluators in 2018. The RPP focused on the 33 K-5 serving schools to engage all students in integrated CS/CT teaching and learning and to create a cadre of skilled and confident elementary classroom teachers ready to support their students in learning CS/CT concepts and practices. The pandemic exacerbated barriers and inequities across the district, which serves over 25,000 diverse students (9.7% white/nonHispanic, 83.7% high needs). Having observed a lack of awareness and expertise among many K-5 teachers for implementing CS/CT content and practices and seeing barriers to equitable CS/CT teaching and learning, the RPP designed an iterative, teacher-led, co-design of curriculum supported by equity-focused and embedded professional learning. This experience report describes how we refined our strategies for curriculum development and diffusion, professional learning, and importantly, our commitment to addressing diversity, equity, and inclusion beyond just reaching all students. The RPP broadened its focus on understanding race and equity to empower students to understand how technology affects their identities and to equip them to critically participate in the creation and use of technology 
    more » « less
  5. Abstract This study explored teachers’ conceptualizations of integrated computational modeling in secondary physics by exposing twelve experienced physics teachers to programming and then analyzing interview responses. Responses revealed that teachers fell along a spectrum of disciplinary boundary–stretching mentalities. This paper presents a preliminary conceptual framework for exploring both horizontal (interdisciplinary) and vertical (intradisciplinary) boundary stretching, as well as for identifying bounded mentalities as teachers consider integration. Horizontal boundary stretchers envisioned opportunities to use computational modeling to shift their curriculum or pedagogical approaches in physics to help students enhance skills underlying multiple fields, while vertical boundary stretchers considered how computing might allow students to explore physics concepts more deeply. Teachers with more boundary-stretching indicators at the outset of an integrated curriculum development workshop were more likely to persist in the implementation of computational modeling–integrated materials in their physics classrooms than those who expressed more bounded thinking. These findings emphasize the importance of considering teachers’ perceptions about how their own science discipline is connected to similar fields and provide implications about how to identify potential adopters of innovative teaching approaches. 
    more » « less